• Title, Summary, Keyword: 단백질-단백질 상호작용 예측

Search Result 59, Processing Time 0.035 seconds

Prediction of Protein Interactions using the Associative Feature Concept Space Mapping (연관속성개념공간으로의 사상을 이용한 단백질 상호작용 예측)

  • Eom Jae-Hong;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.73-75
    • /
    • 2006
  • 생물체 내에서 중요 생물학적 기능을 수행하는 기본 단위인 단백질 및 이들의 상호작용 대한 많은 연구가 이루어져 다양한 생물체에 대한 단백질 상호작용 데이터베이스가 구축되었다. 본 논문에서는 효모에 대해 공개되어있는 단백질 상호작용 데이터를 이용하여 새로운 단백질 상호작용을 예측하는 방법을 제안한다. 논문에서는 문헌에서 연관 정보를 효율적으로 찾아내기 위하여 제안된 연관개념공간 탐색 방법을 확장하여 단백질 상호작용 예측에 사용한다. 단백질들은 각각이 가지는 다양한 속성들의 벡터로 간주되며, 상호작용은 해당 단백질들의 연관성을 통해 이루어지는 것으로 표현된다. 상호작용하는 두 단백질들의 속성은 단어의 공동 출현과 같이 고려되어 단백질 상호작용은 두 단백질 벡터의 요소로 표현되고 벡터의 요소 속성들 간의 연관성을 표현하기 위해 연관속성개념공간으로 사상되어 공간상의 거리 기반으로 연관속성을 추출한다. 추출된 연관속성을 최대로 포함하는 단백질들 간의 상호작용을 예측하는 방식으로 단백질 상호작용을 예측한다. 논문에서 제안한 방법은 효모의 단백질 상호작용 예측에 대해 평균 약 91.8%의 예측 정확도를 보여, 연관속성개념공간을 이용한 방법이 단백질 상호작용을 예측하는 또 다른 대안으로 사용 될 수 있음을 확인하였다.

  • PDF

A Protein Function Prediction in Interaction Maps (상호작용 맵에서 단백질 기능 예측)

  • 정재영;최재훈;박종민;박선희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.286-288
    • /
    • 2004
  • 단백질 상호작용 데이터는 현 생물정보학에서 기능이 알려지지 않은 단백질의 기능 예측에 높은 신뢰성이 있는 프로티오믹스의 계산 모델에 이용되고 있다. 일반적으로 이 단백질 기능 예측 알고리즘들은 대규모의 2차원 단백질-단백질 상호작용 맵에서 Guilt-by-Association 개념 기반으로 개발되고 있다. 본 논문에서는 단백질-단백질 상호작용 데이터를 이용한 그래프 기반 단백질 기능 예측 모델을 개발하였다. 특히, 이 모델은 대량의 상호작용 데이터에서 정확한 기능 예측을 수행할 수 있다는 장점을 가지고 있다. 이를 위해 Yeast에 대한 단백질 상호작용 맵, Homology 및 Interaction Generality를 이용하여 이 모델을 평가하였다.

  • PDF

Validation of Domain Combination Based Protein-Protein Interaction Prediction Method Using Human and Fly Proteins (인간 및 초파리 단백질을 대상으로 한 도메인 조합 기반 단백질-단백질 상호작용 예측 기법 검증)

  • Jang Woo-Hyuk;Han Dong-Soo;Kim Hong-Soog;Lee Sung-Doke
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.235-237
    • /
    • 2005
  • 도메인 조합 기반의 단백질-단백질 상호작용 예측 기법(DCPPIP)은 효모 단백질에 대하여 뛰어난 정확도를 보여준다. 그러나 다른 종에서의 예측 정확도 및 기법의 유효성은 아직까지 검증되지 않고 있다. 본 논문에서는, 초파리 및 인간 단백질을 이용한 예측 정확도 검증 및 이종간의 상호작용 예측 실험의 결과를 기술한다. 초파리와 인간 단백질의 실험에서는 각각 10,351개와 2,345개의 상호작용 단백질 쌍이 사용되었다. 초파리와 인간의 상호작용 단백질 쌍 중 $80\%$$20\%$를 각각 학습집단 및 실험집단으로 사용하였으며. 상호작용이 없는 단백질 쌍의 학습집단은 1배에서 5배까지 변화시키면서 예측 정확도를 관찰하였다. 정확도는 실험집단 중 학습집단과 도메인이 완전히 혹은 부분적으로 겹치는 쌍들에 대하여 계산하였다. 이 결과 초파리에서는 약 $77\%$의 민감도와 $92\%$의 특이도가 확인되었고 인간 단백질에 대하여는 약 $96\%$의 민감도와 $95\%$의 특이도를 보여주었다. 이종간의 상호작용 예측 실험은 효모, 초파리, 효모+초파리에 해당하는 학습집단 각각을 바탕으로 Human, Mouse, H. pylori, E. coli, C. elegans 등의 단백질 상호작용 예측을 수행하였다. 실험 결과 학습집단의 도메인이 실험집단의 도메인과 많이 겹칠 수륵 높은 정확도를 보여주었으며, 도메인 집단간의 유사도를 나타내기 위해 고안한 Domain Overlapping Rate(DOR)는 상호작용 예측 정확도의 중요한 요소임을 찾아 내었다.

  • PDF

Prediction of Yeast Protein-Protein Interactions by Neural Feature Association Rule (Neural Feature Association Rule을 이용한 효모 단백질-단백질 상호작용의 예측)

  • Eom Jae-Hong;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.277-279
    • /
    • 2005
  • 단백질들은 서로 다른 단백질들과 상호작용하거나 복합물을 형성함으로써 생물학적으로 중요한 기능을 한다고 알려져 있다. 때문에 대부분의 세포작용에 있어 중요한 역할을 하는 단백질들 간의 상호작용 분석 및 예측에 대한 연구는 여러 연구그룹으로부터 풍부한 데이터가 산출된 후게놈시대(post-genomic era)에서 또 하나의 중요한 이슈가 되고 있다. 본 논문에서는 효모에 대해 공개되어있는 단백질 상호작용 데이터들에서 속성들 간의 연관규칙 학습을 통해 잠재적 단백질 상호작용들을 예측하기 위한 연관규칙 기반의 상호작용 예측 방법을 제시한다. 단백질들 간의 상호작용 예측을 위해 고려되는 각 단백질의 다수의 속성차원은 정보이론 기반의 속성선택 알고리즘을 이용하여 효율적으로 줄이며 상호작용의 속성집합을 이용하여 신경망을 훈련시키고 이렇게 훈련된 신경망에서 속성들 간의 연관규칙을 디코딩하여 연관규칙 기반의 상호작용 예측에 활용한다. 연관속성 발굴을 통한 상호작용 예측을 위한 마이닝 방법으로는 연관규칙 발견 알고리즘을 사용하였으며 예측 정확도를 높이기 위하여 신경망 예측 모델의 학습 결과를 디코딩한 규칙들이 추가적으로 사용하였다. 논문에서 제안한 방법을 발견된 연관규칙을 통한 단백질 상호작용 예측문제에 있어 평균 약 $94.5\%$의 예측 정확도를 보였다.

  • PDF

A Domain Combination-based Probabilistic Framework for Protein-Protein Interaction Prediction (도메인 조합 기반 단백질-단백질 상호작용 확률 예측 틀)

  • 한동수;서정민;김홍숙;장우혁
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.4
    • /
    • pp.299-308
    • /
    • 2004
  • In this paper, we propose a probabilistic framework to predict the interaction probability of proteins. The notion of domain combination and domain combination pair is newly introduced and the prediction model in the framework takes domain combination pair as a basic unit of protein interactions to overcome the limitations of the conventional domain pair based prediction systems. The framework largely consists of prediction preparation and service stages. In the prediction preparation stage, two appearance probability matrices, which hold information on appearance frequencies of domain combination pairs in the interacting and non-interacting sets of protein pairs, are constructed. Based on the appearance probability matrix, a probability equation is devised. The equation maps a protein pair to a real number in the range of 0 to 1. Two distributions of interacting and non-interacting set of protein pairs are obtained using the equation. In the prediction service stage, the interaction probability of a Protein pair is predicted using the distributions and the equation. The validity of the prediction model is evaluated for the interacting set of protein pairs in Yeast organism and artificially generated non-interacting set of protein pairs. When 80% of the set of interacting protein pairs in DIP database are used as teaming set of interacting protein pairs, very high sensitivity(86%) and specificity(56%) are achieved within our framework.

Prediction of Protein Function using Pattern Mining in Protein-Protein Interaction Network (단백질 상호작용 네트워크에서의 단백질 기능예측을 위한 패턴 마이닝)

  • Kim, Taewook;Li, Meijing;Li, Peipei;Ryu, Keun Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.1115-1118
    • /
    • 2011
  • 단백질 사이의 상호작용 네트워크(PPI network: Protein-Protein Interaction network)를 이용하여 단백질 기능을 예측 하는 것은 단백질 기능 예측 기법들 중에서 중요한 작용을 한다. 하지만 PPI를 이용한 단백질 기능 예측은 기능의 복잡도와 다양성으로 인해 제한적인 결과를 나타내 왔다. 따라서 본 논문에서는 기존의 연구들 보다 높은 정확도로 단백질 기능을 예측하기 위해 기능 예측을 하려는 단백질과 상호작용 하는 단백질들에 그래프 마이닝 기법을 적용하여 빈발 2-노드 상호작용 패턴을 찾고, 그 패턴을 이용하여 단백질 기능을 예측하는 접근법을 제안하였다. 실험데이터로 DIP(Database of Interacting Proteins)에서 제공하는 단백질 상호작용 데이터를 사용하였으며, 다른 기존의 단백질 기능 예측 기법들보다 높은 정확도를 보여주었다.

  • PDF

Modular neural network in prediction of protein function (단위 신경망을 이용한 단백질 기능 예측)

  • Hwang Doo-Sung
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The prediction of protein function basically make use of a protein-protein interaction map based on the concept of guilt-by-association. The method however cannot determine the functions of proteins in case that the target protein does not interact with proteins with known functions directly. This paper studies protein function prediction considering the given problem as a K-class classification problem and proposes a predictive approach utilizing a modular neural network. The proposed method uses interaction data and protein related attributes as well. The experimental results demonstrate that the proposed approach can predict the functional roles of Yeast proteins whose interaction knowledge is not known and shows better performance than the graph-based models that use protein interaction data.

Inter-Species Validation for Domain Combination Based Protein-Protein Interaction Prediction Method

  • Jang, Woo-Hyuk;Han, Dong-Soo;Kim, Hong-Soog;Lee, Sung-Doke
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • /
    • pp.243-248
    • /
    • 2005
  • 도메인 조합에 기반한 단백질 상호작용 예측 기법은 효모와 같은 특정 종에 대하여 우수한예측 정확도를 보이는 것으로 알려졌으나, 인간과 같은 고등 생명체의 단백질에 대한 상호작용 예측을 수행하기 위하여는 여러종에 대한 기법의 적절성검증과 최적의 학습집단 구성 방안에 대한 연구가 선행되어야 한다. 본 논문에서는, 초파리 단백질을 이용한 예측 정확도 검증으로 도메인 조합 기법의 일반화 가능성을 타진 하고 이종간의 상호작용 예측실험 및 정확도 검증을 통하여 비교적 연구가 덜 되어진 종의 단백질 상호작용 예측을 위한 학습집단 구성 방법에 대하여 기술한다. 초파리 실험에서는 10351개의 상호작용이 있는 단백질 쌍 가운데, 80%와 20%를 각각 학습집단 및 실험집단으로 사용하였으며, 상호작용이 없는단백질 쌍의 학습집단은 1배에서 5배까지 변화시키면서 예측 정확도를 관찰하였다. 이 결과77.58%의 민감도와 92.61%의 특이도를 확인하였다. 이종간의 상호작용 예측 실험은 효모, 초파리, 효모, 초파리에 해당하는 학습집단 각각을 바탕으로 Human, Mouse, E. coli, C. elegans 등의 단백질 상호작용 예측을 수행하였다. 실험 곁과 학습집단의 도메인이 실험집단의 도메인과 많이 겹칠수록 높은 정확도를 보여주었으며, 도메인 집단간의 유사도를 나타내기 위해 고안한 Domain Overlapping Rate(DOR) 는 상호작용 예측 정확도의 중요한 요소임을 찾아내었다.

  • PDF

Graph-based modeling for protein function prediction (단백질 기능 예측을 위한 그래프 기반 모델링)

  • Hwang Doosung;Jung Jae-Young
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2
    • /
    • pp.209-214
    • /
    • 2005
  • The use of protein interaction data is highly reliable for predicting functions to proteins without function in proteomics study. The computational studies on protein function prediction are mostly based on the concept of guilt-by-association and utilize large-scale interaction map from revealed protein-protein interaction data. This study compares graph-based approaches such as neighbor-counting and $\chi^2-statistics$ methods using protein-protein interaction data and proposes an approach that is effective in analyzing large-scale protein interaction data. The proposed approach is also based protein interaction map but sequence similarity and heuristic knowledge to make prediction results more reliable. The test result of the proposed approach is given for KDD Cup 2001 competition data along with those of neighbor-counting and $\chi^2-statistics$ methods.

Protein-Protein Interaction Prediction using Interaction Significance Matrix (상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측)

  • Jang, Woo-Hyuk;Jung, Suk-Hoon;Jung, Hwie-Sung;Hyun, Bo-Ra;Han, Dong-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.851-860
    • /
    • 2009
  • Recently, among the computational methods of protein-protein interaction prediction, vast amounts of domain based methods originated from domain-domain relation consideration have been developed. However, it is true that multi domains collaboration is avowedly ignored because of computational complexity. In this paper, we implemented a protein interaction prediction system based the Interaction Significance matrix, which quantified an influence of domain combination pair on a protein interaction. Unlike conventional domain combination methods, IS matrix contains weighted domain combinations and domain combination pair power, which mean possibilities of domain collaboration and being the main body on a protein interaction. About 63% of sensitivity and 94% of specificity were measured when we use interaction data from DIP, IntAct and Pfam-A as a domain database. In addition, prediction accuracy gradually increased by growth of learning set size, The prediction software and learning data are currently available on the web site.