• Title, Summary, Keyword: 도메인 조합

Search Result 70, Processing Time 0.033 seconds

Identification of Conserved Protein Domain Combination based on Association Rule (연관성 규칙에 기반한 보존된 단백질 도베인 조합의 식별)

  • Jung, Suk-Hoon;Jang, Woo-Hyuk;Han, Dong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.375-379
    • /
    • 2009
  • Protein domain is the conserved unit of compact tree-dimensional structure and evolution, which carries specific function. Domains may appear in patterns in proteins, since they have been conserved through the evolution for functional formation of proteins. In this paper, we propose a formulated method for conservation analysis of domain combination based on association rule. Proposed method measures mutual dependency of domains in a combination, as well as co-occurrence frequency of them, which is conventionally used. Based on the method, we extracted conserve domain combinations in S.cerevisiae proteins and analyzed their functions based on Gene Ontology. From the results, we drew conclusions that domains in S.cerevisiae proteins form patterns whose members are highly affiliated to one another, and that extracted patterns tend to be associated with molecular function. Moreover, the results testified to proposed method superior to conventional ones for identifying domain combinations conserved for functional cooperation.

Protein-Protein Interaction Prediction using Interaction Significance Matrix (상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측)

  • Jang, Woo-Hyuk;Jung, Suk-Hoon;Jung, Hwie-Sung;Hyun, Bo-Ra;Han, Dong-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.851-860
    • /
    • 2009
  • Recently, among the computational methods of protein-protein interaction prediction, vast amounts of domain based methods originated from domain-domain relation consideration have been developed. However, it is true that multi domains collaboration is avowedly ignored because of computational complexity. In this paper, we implemented a protein interaction prediction system based the Interaction Significance matrix, which quantified an influence of domain combination pair on a protein interaction. Unlike conventional domain combination methods, IS matrix contains weighted domain combinations and domain combination pair power, which mean possibilities of domain collaboration and being the main body on a protein interaction. About 63% of sensitivity and 94% of specificity were measured when we use interaction data from DIP, IntAct and Pfam-A as a domain database. In addition, prediction accuracy gradually increased by growth of learning set size, The prediction software and learning data are currently available on the web site.

A Domain Combination-based Probabilistic Framework for Protein-Protein Interaction Prediction (도메인 조합 기반 단백질-단백질 상호작용 확률 예측 틀)

  • 한동수;서정민;김홍숙;장우혁
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.4
    • /
    • pp.299-308
    • /
    • 2004
  • In this paper, we propose a probabilistic framework to predict the interaction probability of proteins. The notion of domain combination and domain combination pair is newly introduced and the prediction model in the framework takes domain combination pair as a basic unit of protein interactions to overcome the limitations of the conventional domain pair based prediction systems. The framework largely consists of prediction preparation and service stages. In the prediction preparation stage, two appearance probability matrices, which hold information on appearance frequencies of domain combination pairs in the interacting and non-interacting sets of protein pairs, are constructed. Based on the appearance probability matrix, a probability equation is devised. The equation maps a protein pair to a real number in the range of 0 to 1. Two distributions of interacting and non-interacting set of protein pairs are obtained using the equation. In the prediction service stage, the interaction probability of a Protein pair is predicted using the distributions and the equation. The validity of the prediction model is evaluated for the interacting set of protein pairs in Yeast organism and artificially generated non-interacting set of protein pairs. When 80% of the set of interacting protein pairs in DIP database are used as teaming set of interacting protein pairs, very high sensitivity(86%) and specificity(56%) are achieved within our framework.

The Problem of the e-value of InterPro to find additional domains in Domain Combination (InterPro의 e-value 조정을 통한 신규 도메인 발견 접근 방식의 문제점)

  • Hur, Hee-Young;Han, Dong-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.17-21
    • /
    • 2006
  • 도메인 기반 단백질 상호작용 예측 기법은 지난 몇 년 동안 활발히 연구되어 왔다. 도메인 기반 접근 방법 중에서도 도메인 조합 기반 단백질 상호작용 가능성 순위 부여 기법은 예측 정확도면에서 다른 기법보다 월등한 결과를 보여주고 있다. 그러나 학습 집단을 사용하는 특징 때문에 전체 도메인 정보를 이용할 수 없는 단점이 있다. 또한, 이 시스템은 도메인 정보가 부족하여 다른 기능을 하는 단백질이라도 같은 도메인 정보를 보여주기 때문에 예측 시스템의 결점을 드러내고 있다. 도메인 조합 기반 단백질 상호작용 가능성 순위 부여 기법은 InterPro 데이터베이스의 도메인 정보를 기반으로 사용한다. InterProScan은 InterPro의 여러 멤버 데이터베이스의 정보를 기반으로 Sequence 분석을 하는 소프트웨어로써 검색 후 단계에서 찾아낸 결과들을 e-value를 기반으로 여과한다. 본 논문에서는 제시된 e-value를 조정 방법을 사용함으로써 단백질 내 도메인 패턴의 다양화와 기존 도메인 정보가 없던 단백질의 도메인을 새롭게 발견할 수 있으나 접근 방식의 한계가 존재함을 확인할 수 있었다.

  • PDF

Emotion Recognition using Various Combinations of Audio Features and Textual Information (음성특징의 다양한 조합과 문장 정보를 이용한 감정인식)

  • Seo, Seunghyun;Lee, Bowon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.137-139
    • /
    • 2019
  • 본 논문은 다양한 음성 특징과 텍스트를 이용한 멀티 모드 순환신경망 네트워크를 사용하여 음성을 통한 범주형(categorical) 분류 방법과 Arousal-Valence(AV) 도메인에서의 분류방법을 통해 감정인식 결과를 제시한다. 본 연구에서는 음성 특징으로는 MFCC, Energy, Velocity, Acceleration, Prosody 및 Mel Spectrogram 등의 다양한 특징들의 조합을 이용하였고 이에 해당하는 텍스트 정보를 순환신경망 기반 네트워크를 통해 융합하여 범주형 분류 방법과 과 AV 도메인에서의 분류 방법을 이용해 감정을 이산적으로 분류하였다. 실험 결과, 음성 특징의 조합으로 MFCC Energy, Velocity, Acceleration 각 13 차원과 35 차원의 Prosody 의 조합을 사용하였을 때 범주형 분류 방법에서는 75%로 다른 특징 조합들 보다 높은 결과를 보였고 AV 도메인 에서도 같은 음성 특징의 조합이 Arousal 55.3%, Valence 53.1%로 각각 가장 높은 결과를 보였다.

  • PDF

Protein Interaction Possibility Ranking Method based on Domain Combination (도메인 조합 기반 단백질 상호작용 가능성 순위 부여 기법)

  • Han Dong-Soo;Kim Hong-Song;Jong Woo-Hyuk;Lee Sung-Doke
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.5
    • /
    • pp.427-435
    • /
    • 2005
  • With the accumulation of protein and its related data on the Internet, many domain based computational techniques to predict protein interactions have been developed. However, most of the techniques still have many limitations to be used in real fields. They usually suffer from a low accuracy problem in prediction and do not provide any interaction possibility ranking method for multiple protein pairs. In this paper, we reevaluate a domain combination based protein interaction prediction method and develop an interaction possibility ranking method for multiple protein pairs. Probability equations are devised and proposed in the framework of domain combination based protein interaction prediction method. Using the ranking method, one can discern which protein pair is more probable to interact with each other than other protein pairs in multiple protein pairs. In the validation of the ranking method, we revealed that there exist some correlations between the interacting probability and the precision of the prediction in case of the protein pair group having the matching PIP(Primary Interaction Probability) values in the interacting or non interacting PIP distributions.

Validation of Domain Combination Based Protein-Protein Interaction Prediction Method Using Human and Fly Proteins (인간 및 초파리 단백질을 대상으로 한 도메인 조합 기반 단백질-단백질 상호작용 예측 기법 검증)

  • Jang Woo-Hyuk;Han Dong-Soo;Kim Hong-Soog;Lee Sung-Doke
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.235-237
    • /
    • 2005
  • 도메인 조합 기반의 단백질-단백질 상호작용 예측 기법(DCPPIP)은 효모 단백질에 대하여 뛰어난 정확도를 보여준다. 그러나 다른 종에서의 예측 정확도 및 기법의 유효성은 아직까지 검증되지 않고 있다. 본 논문에서는, 초파리 및 인간 단백질을 이용한 예측 정확도 검증 및 이종간의 상호작용 예측 실험의 결과를 기술한다. 초파리와 인간 단백질의 실험에서는 각각 10,351개와 2,345개의 상호작용 단백질 쌍이 사용되었다. 초파리와 인간의 상호작용 단백질 쌍 중 $80\%$$20\%$를 각각 학습집단 및 실험집단으로 사용하였으며. 상호작용이 없는 단백질 쌍의 학습집단은 1배에서 5배까지 변화시키면서 예측 정확도를 관찰하였다. 정확도는 실험집단 중 학습집단과 도메인이 완전히 혹은 부분적으로 겹치는 쌍들에 대하여 계산하였다. 이 결과 초파리에서는 약 $77\%$의 민감도와 $92\%$의 특이도가 확인되었고 인간 단백질에 대하여는 약 $96\%$의 민감도와 $95\%$의 특이도를 보여주었다. 이종간의 상호작용 예측 실험은 효모, 초파리, 효모+초파리에 해당하는 학습집단 각각을 바탕으로 Human, Mouse, H. pylori, E. coli, C. elegans 등의 단백질 상호작용 예측을 수행하였다. 실험 결과 학습집단의 도메인이 실험집단의 도메인과 많이 겹칠 수륵 높은 정확도를 보여주었으며, 도메인 집단간의 유사도를 나타내기 위해 고안한 Domain Overlapping Rate(DOR)는 상호작용 예측 정확도의 중요한 요소임을 찾아 내었다.

  • PDF

Inter-Species Validation for Domain Combination Based Protein-Protein Interaction Prediction Method

  • Jang, Woo-Hyuk;Han, Dong-Soo;Kim, Hong-Soog;Lee, Sung-Doke
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • /
    • pp.243-248
    • /
    • 2005
  • 도메인 조합에 기반한 단백질 상호작용 예측 기법은 효모와 같은 특정 종에 대하여 우수한예측 정확도를 보이는 것으로 알려졌으나, 인간과 같은 고등 생명체의 단백질에 대한 상호작용 예측을 수행하기 위하여는 여러종에 대한 기법의 적절성검증과 최적의 학습집단 구성 방안에 대한 연구가 선행되어야 한다. 본 논문에서는, 초파리 단백질을 이용한 예측 정확도 검증으로 도메인 조합 기법의 일반화 가능성을 타진 하고 이종간의 상호작용 예측실험 및 정확도 검증을 통하여 비교적 연구가 덜 되어진 종의 단백질 상호작용 예측을 위한 학습집단 구성 방법에 대하여 기술한다. 초파리 실험에서는 10351개의 상호작용이 있는 단백질 쌍 가운데, 80%와 20%를 각각 학습집단 및 실험집단으로 사용하였으며, 상호작용이 없는단백질 쌍의 학습집단은 1배에서 5배까지 변화시키면서 예측 정확도를 관찰하였다. 이 결과77.58%의 민감도와 92.61%의 특이도를 확인하였다. 이종간의 상호작용 예측 실험은 효모, 초파리, 효모, 초파리에 해당하는 학습집단 각각을 바탕으로 Human, Mouse, E. coli, C. elegans 등의 단백질 상호작용 예측을 수행하였다. 실험 곁과 학습집단의 도메인이 실험집단의 도메인과 많이 겹칠수록 높은 정확도를 보여주었으며, 도메인 집단간의 유사도를 나타내기 위해 고안한 Domain Overlapping Rate(DOR) 는 상호작용 예측 정확도의 중요한 요소임을 찾아내었다.

  • PDF

Design of Enterprise Architectures Framework using Architecture Unit and Domain Specific Method (도메인 기반 모델링과 구조 유니트를 이용한 기업 구조 프레임워크의 설계방법)

  • Chae Heekwon;Kim Kwangsoo;Kim Cheolhan;Choi Younghwan
    • The Journal of Society for e-Business Studies
    • /
    • v.10 no.2
    • /
    • pp.21-41
    • /
    • 2005
  • An Enterprise Architecture (EA) Framework is a tool which supports implementation of the Enterprise architecture that is used to enhance the interoperability of the IT components. In this paper, we propose a framework named as ENAE (ENterprise Architecture Framework) which combines enterprise architecture unit (AU), reference model, and association relationship between domain model. Architecture Unit is defined as a minimum set of a business process and its associated components such as application system and technical components. An EA can be designed and implemented by the aggregating the related AUs including association relationship between Architecture Units. Because UML model has limitations to describe business domain semantics because it is designed for general purpose, we adapt the DSM (Domain Specific Modeling) concept. We describe association relationship between Architecture Units designed by Domain Specific Modeling through Topic Map. Session 2 describes related works about Enterprise Architecture frameworks, Domain Specific Modeling, and Topic Map, while Session 3 explains components of the ENAF. Finally Session 4 shows the case study for implementation of the new Framework called ENAF.

  • PDF