Rolling noises during train operation are caused by vibration excited from irregularities of surface roughness between wheel and rail. Therefore, a proper measurement and analysis techniques of acoustic roughness between wheel and rail surface are required for transmission, prediction, and analysis of the train rolling noise. However, since current measuring devices and methods use trolley-based manual handling devices, the measurements induce unstable measuring speed and vibrational interface that increases errors and disturbances. In this paper, a new automatic rail surface exploring platform with a speed controller has been developed for improving measurement accuracy and reducing inconsistency of measurements. In addition, we propose a data integration method of the rail surface roughness with multiple homogeneous displacement sensors and verified the accuracy of the integrated data through standard test-bed railway track investigation.