• Title, Summary, Keyword: 마코브 모델

Search Result 39, Processing Time 0.047 seconds

Analysis of Daily Precipitation in South Korea Using a Higher Order Markov Chain-dependent Model (고차의 마코브 연쇄-의존 모델을 이용한 남한 강수량 자료의 분석)

  • 박정수;정영근;김래선
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.347-362
    • /
    • 1999
  • 강수 형태 및 강수량을 동시에 고려하는 1차의 마코브 연쇄-의존 모델을 고차의 모델로 확장하였다. 남한의 53개 지역의 강수량 자료에 대해 계절별로 마코브 연쇄의 차수를 결정하였고, 고차의 마코브 연쇄-의존 모델을 적용하여 강수량의 분포특성을 살펴 보았다.

  • PDF

확장형 히든마코브모델을 이용한 산화막 플라즈마 식각공정의 식각종료점 검출방법

  • Jeon, Seong-Ik;Kim, Seung-Gyun;Hong, Sang-Jin;Han, Seung-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.407-407
    • /
    • 2010
  • 본 논문에서는 확장된 히든마코브모델을 이용하여 플라즈마 식각공정에서 식각종료검출을 위한 방법을 연구하였다. 플라즈마 식각장비는 유도성 결합플라즈마 시스템을 사용하였으며, 종료점 검출을 위해 식각공정이 진행됨에 따른 플라즈마의 상태를 확인할 수 있는 광학 방사 분광기(Optical Emission Spectroscopy: OES)를 사용하였다. 식각이 진행되는 동안 여기되는 입자들은 특정한 재료에 해당하는 파장에서 빛을 방출한다. 플라즈마상태에서 여기되는 원자와 분자들에 의해서 방출되는 빛은 OES를 통해 식각되는 물질을 확인하기 위해서 특별한 파장의 빛을 선택하여 분석한다. 본 논문에서는 확장된 히든마코브모델을 이용해 산화물이 식각될 때 방출하는 고유한 파장의 빛을 분석하여 식각이 종료되는 시점을 찾는 연구를 하였다. 제안된 확장형 히든마코브 모델은 세미-마코브모델과 분절특징 히든마코브모델을 결합한 것으로, 확률적 통계기법을 통해 종료시점을 찾아내는 방법이다. OES를 통해 얻은 데이터는 식각 종료가 일어나기 전의 파장의 상태와 식각이 종료된 후의 파장의 상태로 구분되어지는데, 식각종료시점에서 파장의 상태가 변화하며 이를 감지하여 식각종료점을 검출한다. 분절특징 히든마코브모델을 이용하여 식각종료시점 전후의 파장의 상태를 모델링 하였으며, 일반적인 마코브 모델의 특정상태가 유지될 시간의 확률을 변형된 세미-마코브 모델을 이용하여 OES를 통해 얻은 데이터 내에서 식각 종료가 일어나기 전의 상태가 유지될 수 있는 확률을 모델링 하였다. 실험을 통해 얻어진 6개의 데이터중 4개를 학습을 위해 사용하여 모델링을 하였고 나머지 2개의 데이터를 검증을 위해 사용한 결과, 확장형 히든마코브모델의 식각종료시점검출에 있어 뛰어난 정확성과 우수성을 증명하였다.

  • PDF

A Multi-stage Markov Process Model to Evaluate the Performance of Priority Queues in Discrete-Event Simulation: A Case Study with a War Game Model (이산사건 시뮬레이션에서의 우선순위 큐 성능분석을 위한 다단계 마코브 프로세스 모델: 창조 모델에 대한 사례연구)

  • Yim, Dong-Soon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.61-69
    • /
    • 2008
  • In order to evaluate the performance of priority queues for future event list in discrete-event simulations, models representing patterns of enqueue and dequeue processes are required. The time complexities of diverse priority queue implementations can be compared using the performance models. This study aims at developing such performance models especially under the environment that a developed simulation model is used repeatedly for a long period. The developed performance model is based on multi-stage Markov process models; probabilistic patterns of enqueue and dequeue are considered by incorporating non-homogeneous transition probability. All necessary parameters in this performance model would be estimated by analyzing a results obtained by executing the simulation model. A case study with a war game simulation model shows how the parameters defined in muti-stage Markov process models are estimated.

  • PDF

Hidden Markov Model-based Extraction of Internet Information (은닉 마코브 모델을 이용한 인터넷 정보 추출)

  • Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.8-14
    • /
    • 2009
  • A Hidden Markov Model(HMM)-based information extraction method is proposed in this paper. The proposed extraction method is applied to extraction of products' prices. The input of the proposed IESHMM is the URLs of a search engine's interface, which contains the names of the product types. The output of the system is the list of extracted slots of each product: name, price, image, and URL. With the observation data set Maximum Likelihood algorithm and Baum-Welch algorithm are used for the training of HMM and The Viterbi algorithm is then applied to find the state sequence of the maximal probability that matches the observation block sequence. When applied to practical problems, the proposed HMM-based system shows improved results over a conventional method, PEWEB, in terms of recall ration and accuracy.

A Markov model for forecasting future demands having on/off pattern (On/Off 패턴을 따르는 수요에 대한 마코브 예측모델)

  • 여건민;전치혁
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • /
    • pp.491-494
    • /
    • 1996
  • 주문이 매 시점마다 있는 것이 아니라 간헐적인, 즉 어느 시점에는 주문이 있고(ON) 다른시점에는 주문이 없는(OFF) 패턴에서 미래의 주문량에 대한 예측을 고려한다. 다음 시점의 예측량은 우선 주문이 있을 것인가에 대한 판단과 주문이 있다면 어느정도가 예상되는가 하는 문제의 두 가지 측면을 모두 고려해야 한다. 기존의 예측모델은 주문량 자체에 대한 고려가 일반적이며 주문시기에 대한 고려는 전무한 상태이기 때문에 이와 같은 주문패턴을 반영시키는데는 어려움이 따른다고 볼 수 있다. 본 논문에서는 이러한 주문패턴을 마코브 체인으로 모델링하고, 이러한 형태의 상태전이확률(state transition probaility) 추정식이 각각 독립적인 오목함수 (concave function)로 구성되어 있음을 보인다. 또한 확률적으로 표현되는 미래의 주문상태들에 대한 패턴을 확정시키는 알고리듬과 주문량 추정에 있어서 과거의 주문패턴을 반영시키는 모델을 제시한다.

  • PDF

A Study on the Architecture-based Model of High Availability of Railway Control Systems (열차제어시스템의 아키텍처 기반 고가용도 모델 적용에 관한 연구)

  • Lee, Kyoung-Haing;Kwon, Yong-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.87-93
    • /
    • 2011
  • This work describes an availability model of highly available systems to achieve Five-9's availability. Modern railway systems have raised users' expectations of powerful "always on" services. The crucial characteristics of these highly available services are essential to many modern businesses area, such as telecommunications, railway systems, information operations, Web-based businesses, and so on. The architecture-based model of system availability is useful to assess the feasibility of meeting a high availability target. The Markov model approach is straightforward for relative system engineers to adapt when they model highly available system failure and the failure recovery process. This work proposed the improved availability model through UML2.0. It is shown that the architecture-based model of system availability is a good reasonable by its application of the railway systems.

Markov Model-based Static Obstacle Map Estimation for Perception of Automated Driving (자율주행 인지를 위한 마코브 모델 기반의 정지 장애물 추정 연구)

  • Yoon, Jeongsik;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • This paper presents a new method for construction of a static obstacle map. A static obstacle is important since it is utilized to path planning and decision. Several established approaches generate static obstacle map by grid method and counting algorithm. However, these approaches are occasionally ineffective since the density of LiDAR layer is low. Our approach solved this problem by applying probability theory. First, we converted all LiDAR point to Gaussian distribution to considers an uncertainty of LiDAR point. This Gaussian distribution represents likelihood of obstacle. Second, we modeled dynamic transition of a static obstacle map by adopting the Hidden Markov Model. Due to the dynamic characteristics of the vehicle in relation to the conditions of the next stage only, a more accurate map of the obstacles can be obtained using the Hidden Markov Model. Experimental data obtained from test driving demonstrates that our approach is suitable for mapping static obstacles. In addition, this result shows that our algorithm has an advantage in estimating not only static obstacles but also dynamic characteristics of moving target such as driving vehicles.

Information Service by Customer Property Analysis using the Markov Model in the CRM (CRM에서 마코프 모델을 이용한 고객 성향분석에 따른 정보제공)

  • 김홍주;이태경;서영호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • /
    • pp.533-536
    • /
    • 2001
  • CRM에서 고객에 대한 10g등의 고객 정보를 통해 효율적인 서비스의 필요성이 강조되고 있다. 기존의 서비스는 대상 고객의 관심도와 성향 분석을 통한 것이라기 보다는 무조건적으로 제공되는 구체이고 체계적인 지식이 결여된 상태이므로 고개의 요구에 정확한 정보의 제공이 어려웠다. 그러므로, 본 논문에서는 고객이 원하는 정보를 정확하게 제공하기 위해 고객이 필요한 정보를 자동적으로 수집, 분류할 수 있는 마코브 모델을 통해서 통계와 분석을 수행하여 고객 정보의 분류와 획득에 의한 정보 서비스를 제공하고자 한다.

  • PDF

A Study on Prediction of Mass SQL Injection Worm Propagation Using The Markov Chain (마코브 체인을 이용한 Mass SQL Injection 웜 확산 예측에 관한 연구)

  • Park, Won-Hyung;Kim, Young-Jin;Lee, Dong-Hwi;Kim, Kui-Nam J.
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.173-181
    • /
    • 2008
  • Recently, Worm epidemic models have been developed in response to the cyber threats posed by worms in order to analyze their propagation and predict their spread. Some of the most important ones involve mathematical model techniques such as Epidemic(SI), KM (Kermack-MeKendrick), Two-Factor and AAWP(Analytical Active Worm Propagation). However, most models have several inherent limitations. For instance, they target worms that employ random scanning in the network such as CodeRed worm and it was able to be applied to the specified threats. Therefore, we propose the probabilistic of worm propagation based on the Markov Chain, which can be applied to cyber threats such as Mass SQL Injection worm. Using the proposed method in this paper, we can predict the occurrence probability and occurrence frequency for each threats in the entire system.

  • PDF