Recently, various monitoring systems are implemented actively by using wireless sensor networks(WSN). When implementing WSN-based monitoring system, there are three important issues to consider. At First, we need to consider a sensor node failure detection method to support the ongoing monitoring. Secondly, because sensor nodes use limited battery power, we need an efficient data filtering method to reduce energy consumption. At Last, a reducing processing overhead method is necessary. The existing Kalman filtering scheme has good performance on data filtering, but it causes too much processing overhead to estimate sensed data. To solve these problems, we, in this paper, propose a new data filtering scheme based on data statical analysis. First, the proposed scheme periodically aggregates node survival massages to support a node failure detection. Secondly, to reduce energy consumption, it sends the sample data with a node survival massage and do data filtering based on those messages. Finally, it analyzes the sample data to estimate filtering range in a server. As a result, each sensor node can use only simple compare operation for filtering data. In addition, we show from our performance analysis that the proposed scheme outperforms the Kalman filtering scheme in terms of the number of sending messages.