In the case of launch vehicles using liquid fuel, natural frequency changes due to fuel consumption after launch, and a modal test is essential to investigate its effect. However, when relying on modal test to characterize the free vibration characteristics, the testing time is excessively increased and accuracy is reduced. Therefore, this paper suggests a modal test method with finite element analysis to overcome these drawbacks. A cylindrical structure filled with liquid are considered as a study model, and modal tests and finite element analyses are performed. The modal tests are conducted by an impulsive method using an impact hammer and accelerometers. Through the comparison of the modal test and the finite element analysis results, the validity of the proposed modal test method is verified. In addition, the free vibration characteristics and the tendency for the cylindrical structure according to the liquid filled ratio were investigated.