• Title, Summary, Keyword: 모델차수축소법

Search Result 19, Processing Time 0.043 seconds

Model Order Reduction for Piezoelectric-Structural Systems with Coriolis Effect (코리올리 효과를 가진 압전-구조계의 모델차수축소법)

  • Han, Jeong-Sam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.713-716
    • /
    • 2010
  • 본 논문에서는 코리올리 효과를 가진 압전-구조 시스템의 주파수응답 해석을 효율적으로 수행하기 위한 크리로프 부공간 모델차수축소법을 제안하였다. 이 방법은 초기 유한요소모델과 축소모델의 전달함수의 계수인 모멘트를 일치시키는 방법을 이용하는 축소기법으로 이미 대형 유한요소모델의 주파수응답 해석에 효과적으로 이용되고 있다. 예제로 고려된 압전형 미소 각속도계의 해석에는 압전구동 하중과 구조체의 회전에 따른 원심력이 동시에 입력하중으로 고려되는 다중입력의 경우이므로 변환행렬 V의 생성시, block Arnoldi 과정을 이용하여 두 하중의 효과를 축소모델에 함께 고려한다. 본 문제에 제안된 축소기법을 이용한 결과, 축소모델을 이용하여 원래 시스템의 관심영역의 주파수응답을 작은 차수의 모델로도 정확하게 계산할 수 있음을 확인하였다. 본 논문에서 제안된 방법을 이용하면 다양한 가진조건과 각속도 입력 하에서의 주파수응답을 정확하고 더욱 효율적으로 계산할 수 있을 것이다.

  • PDF

Comparison of Projection-Based Model Order Reduction for Frequency Responses (주파수응답에 대한 투영기반 모델차수축소법의 비교)

  • Won, Bo Reum;Han, Jeong Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.933-941
    • /
    • 2014
  • This paper provides a comparison between the Krylov subspace method (KSM) and modal truncation method (MTM), which are typical projection-based model order reduction methods. The frequency responses are compared to determine the numerical accuracies and efficiencies. In order to compare the numerical accuracies of the KSM and MTM, the frequency responses and relative errors according to the order of the reduced model and frequency of interest are studied. Subsequently, a numerical examination shows whether a reduced order can be determined automatically with the help of an error convergence indicator. As for the numerical efficiency, the computation time needed to generate the projection matrix and the solution time to perform a frequency response analysis are compared according to the reduced order. A finite element model for a car suspension is considered as an application example of the numerical comparison.

Comparison of Order Reduction Methods for Seismic Analysis (지진해석을 위한 차수축소기법의 비교)

  • Han, Jeong-Sam;Kwon, Ki-Beom
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.739-742
    • /
    • 2011
  • 일반적으로 고층건물이나 교량 등의 지진하중 하에서의 내진 성능 향상을 위해서는 과도지진해석을 수행하는 것이 필요하다. 본 논문에서는 이러한 지진해석을 수행하는데 Krylov 부공간 축소기법을 이용하는 것을 제안하고 기존의 모드중첩법을 이용한 축소기법과 비교하였다. 해석에서 지진하중은 El Centro Earthquake (1940)의 데이터를 이용하였으며 고층건물 모델을 이용하여 두 방법을 정확성과 효율성 측면에서 비교한 수치결과를 제시하였다.

  • PDF

Model Order Reduction Using Moment-Matching Method Based on Krylov Subspace and Its Application to FRF Calculation for Array-Type MEMS Resonators (Krylov 부공간에 근거한 모멘트일치법을 이용한 모델차수축소법 및 배열형 MEMS 공진기 주파수응답함수 계산에의 응용)

  • Han, Jeong-Sam;Ko, Jin-Hwan
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.436-441
    • /
    • 2008
  • One of important factors in designing array-type MEMS resonators is obtaining a desired frequency response function (FRF) within a specific range. In this paper Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented to calculate the FRF of array-type resonators. By matching moments at a frequency around a specific range of the array-type resonators, required FRFs can be efficiently calculated with significantly reduced systems regardless of their operating frequencies. In addition, because of the characteristics of moment-matching method, a minimal order of reduced system with a specified accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations.

  • PDF

Efficient Modal Analysis of Prestressed Structures via Model Order Reduction (모델차수축소법을 이용한 프리스트레스 구조물의 효율적인 고유진동해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1211-1222
    • /
    • 2011
  • It is necessary to use prestressed modal analysis to calculate the modal frequencies and mode shapes of a prestressed structure such as a spinning blade, a preloaded structure, or a thermally deformed pipe, because the prestress effect sometimes causes significant changes in the frequencies and mode shapes. When the finite element model under consideration has a very large number of degrees of freedom, repeated prestressed modal analyses for investigating the prestress effects might become too computationally expensive to finish within a reasonable design-process time. To alleviate these computational difficulties, a Krylov subspace-based model order reduction, which reduces the number of degrees of freedom of the original finite element model and speeds up the necessary prestressed modal analysis with the reduced order models (ROMs), is presented. The numerical process for the moment-matching model reduction is performed directly on the full order models (FOMs) (modeled in ANSYS) by the Arnoldi process. To demonstrate the advantages of this approach for performing prestressed modal analysis, the prestressed wheel and the compressor impeller under their high-speed rotation are considered as examples.

Direct Design Sensitivity Analysis of Frequency Response Function Using Krylov Subspace Based Model Order Reduction (Krylov 부공간 모델차수축소법을 이용한 주파수응답함수의 직접 설계민감도 해석)

  • Han, Jeong-Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.153-163
    • /
    • 2010
  • In this paper a frequency response analysis using Krylov subspace-based model reduction and its design sensitivity analysis with respect to design variables are presented. Since the frequency response and its design sensitivity information are necessary for a gradient-based optimization, problems of high computational cost and resource may occur in the case that frequency response of a large sized finite element model is involved in the optimization iterations. In the suggested method model order reduction of finite element models are used to calculate both frequency response and frequency response sensitivity, therefore one can maximize the speed of numerical computation for the frequency response and its design sensitivity. As numerical examples, a semi-monocoque shell and an array-type $4{\times}4$ MEMS resonator are adopted to show the accuracy and efficiency of the suggested approach in calculating the FRF and its design sensitivity. The frequency response sensitivity through the model reduction shows a great time reduction in numerical computation and a good agreement with that from the initial full finite element model.

Efficient Vibration Simulation Using Model Order Reduction (모델차수축소법을 이용한 효율적인 진동해석)

  • Han Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3
    • /
    • pp.310-317
    • /
    • 2006
  • Currently most practical vibration and structural problems in automotive suspensions require the use of the finite element method to obtain their structural responses. When the finite element model has a very large number of degrees of freedom the harmonic and dynamic analyses are computationally too expensive to repeat within a feasible design process time. To alleviate the computational difficulty, this paper presents a moment-matching based model order reduction (MOR) which reduces the number of degrees of freedom of the original finite element model and speeds up the necessary simulations with the reduced-size models. The moment-matching model reduction via the Arnoldi process is performed directly to ANSYS finite element models by software mor4ansys. Among automotive suspension components, a knuckle is taken as an example to demonstrate the advantages of this approach for vibration simulation. The frequency and transient dynamic responses by the MOR are compared with those by the mode superposition method.

Design Sensitivity Analysis of Frequency Response Using Krylov Subspace Based Model Reduction (Krylov 부공간 축소기법을 이용한 주파수응답의 설계민감도 해석)

  • Han, Jeong-Sam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.131-134
    • /
    • 2009
  • Krylov 부공간 모델차수축소법은 초기 유한요소모델과 축소모델의 전달함수의 계수인 모멘트를 일치시키는 방법을 이용하는 축소기법으로 이미 대형 유한요소모델의 주파수응답 해석의 효율적인 계산에 많이 사용되고 있는 방법 중의 하나이다. 본 논문에서는 Krylov 부공간 축소기법을 이용한 관심 주파수영역에 대한 주파수응답 해석 및 이를 통하여 계산된 주파수응답의 여러 가지 설계변수에 대한 설계민감도 해석방법을 제안하였다. 일반적으로 구조물의 주파수응답을 고려한 최적설계를 위해서는 설계변수에 대한 관심 주파수영역에서의 주파수응답 및 그의 민감도 정보가 요구되므로, 고려하는 유한요소모델이 대형일 경우에 관심 주파수영역에서의 반복적인 해석으로 인한 계산비용의 문제가 대두된다. 본 논문에서는 축소모델을 이용하여 주파수응답과 주파수응답의 설계민감도 해석을 수행하여 계산의 효율성을 극대화하였다. 민감도 계산에는 시간측면과 구현의 용이성 측면에서 장점이 있는 준해석적 방법을 이용하였다. 수치 예제를 통하여 축소기법을 이용한 주파수응답의 설계민감도 해석 결과를 유한차분법에 근거한 민감도 결과와 비교하였다. 본 논문에서 제안된 방법을 이용하는 경우, 주파수응답을 고려한 최적설계를 계산비용 측면에서 매우 효율적으로 수행할 수 있을 것이다.

  • PDF

Study on Application of Isogeometric Analysis Method for the Dynamic Behavior Using a Reduced Order Modeling (축소 모델의 동적 거동 해석을 위한 등기하해석법 적용에 대한 연구)

  • Kim, Min-Geun;Kim, Soo Min;Lee, Geun-Ho;Lee, Hanmin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.275-282
    • /
    • 2018
  • Using isogeometric analysis(IGA) gives more accurate results for higher order mode in eigenvalue problem than using the finite element method(FEM). This is because the FEM has $C^0$ continuity between elements, whereas IGA guarantee $C^{P-1}$ between elements for p-th order basis functions. In this paper, a mode based reduced model is constructed by using IGA and dynamic behavior analysis is performed using this advantage. Craig-Bampton(CB) method is applied to construct the reduced model. Several numerical examples were performed to compare the eigenvalue analysis results for various order of element basis function by applying the IGA and FEM to simple rod analysis. We have confirmed that numerical error increases in the higher order mode as the continuity between elements decreases in the IGA by allowing internal knots multiplicity. The accuracy of the solution can be improved by using the IGA with high inter-element continuity when high-frequency external force acts on the reduced model for dynamic behavior analysis.