• Title, Summary, Keyword: 무선랜(WLAN) 대역 제거

Search Result 4, Processing Time 0.043 seconds

A Design of a Planar UWB Antenna with Notched WLAN band by Using Slot and Slit (슬롯과 슬릿을 사용하여 무선랜 대역이 제거된 평면형 UWB안테나 설계)

  • Lee, Chang-Joo;Kim, Su-Hoon;Park, Young-Bon;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.105-110
    • /
    • 2012
  • In this paper, A planar UWB antenna with notched WLAN band, 802.11a band (5.15 ~ 5.825GHz), by using slot and slit is designed by using CST Microwave Studio. The notched bandwidth can be controlled by the length and width of the slot and slit in the patch and ground plane and it's radiation characteristics are examined through the experiments. The bandwidth based on the -10dB return loss level can be covered the full UWB band (3.1 ~ 10.6GHz) with a notched WLAN band (5.147 ~ 5.83GHz). Also, the experimental radiation pattern is almost omnidirectional in the H-plane.

A design and manufacture of CPW-Fed UWB antenna with notched WLAN band by using a U shaped slot (U자형 슬롯을 사용하여 WLAN 대역이 제거된 CPW 급전 방식을 갖는 UWB 안테나 설계 및 제작)

  • Ha, Yun-Sang;Kim, Gi-Rae;Yun, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2518-2525
    • /
    • 2015
  • In this paper, we propose a UWB(Ultra Wide Band) antenna with CPW(Coplanar Waveguide) structure notched the 802.11a(5.15 ~ 5.825 GHz) band by using the U shaped slot. The proposed antenna not only shows Ultra-Wideband characteristic(3.1 ~ 10.6 GHz) suitable for UWB communications but has partially notched-band characteristic to reject 5 GHz WLAN band(5.15 ~ 5.825 GHz). The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.4, and its overall size is $30mm(W){\times}20mm(L){\times}1mm(t)$. Fabricated antenna satisfied $VSWR{\leq}2$ in 3.1 ~ 10.6 GHz except for the band rejection of 5.15 ~ 5.825 GHz. And measured results of gain and radiation patterns characteristics displayed determined for operating bands.

Performance analysis on the interference suppression method for WLAN system in the presence of WPAN system for Broadband Multimedia system (광대역 멀티미디어 시스템을 위한 WLAN 시스템의 간섭신호 억제방안에 대한 성능분석)

  • Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2129-2135
    • /
    • 2011
  • The WLAN and WPAN systems employed on 2.4GHz ISM band wireless networks provide complementary services within the same environments. Coexistence between the networks will be impaired, if the mutual packets are uncertainty associated the timing or gaussian distance. This paper analyzes the impact of the mutual interference on the services performance and in order to minimize the effect of WPAN system signals on the WLAN system, proposed a method of suppressing the interference on the WLAN system. The analysis is illustrated by examining the symbol error rate versus signal to noise interference ratio in terms of the carrier frequency offset.

A Novel Method to Reduce Local Oscillator Leakage (국부발진기에서의 누설신호의 새로운 제거방식)

  • 이병제;강기조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.294-301
    • /
    • 2000
  • One of the most important design parameters in a microwave radio transmitting system is to reduce spurious response from the output spectrum of the transmitting system. A Local oscillator (LO) is seldom totally pure and at the least contain some LO harmonic signals. A LO or any oscillator is a transmitter if provided with a suitable radiator, conduction, or leakage path. Where mixer is employed in the output of the LO mixer generated spurs can be increased by RF amplifier. To reduce LO leakage, notch filter or band pass filter has been conventionally used. In this paper, the leakage reduction(LR) signal, which has the same magnitude and the opposite phase with respect to LO leakage signal, is added to the output of mixer of the wireless LAN system. The LO leakage is reduced by 30 dB more than the conventional methods do. The proposed method is potentially suitable for low-cost, reliable, and simple application of monolithic microwave integrated circuits (MMICs)

  • PDF