• Title, Summary, Keyword: 문서 분류

Search Result 905, Processing Time 0.035 seconds

A Method of an Automatic Increment of Class Representatives for an Automatic Document Classification (자동 문서 분류를 위한 분류 주제어의 자동 증식 방법)

  • 정호석;임종태;나혜숙;민철호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.151-153
    • /
    • 2000
  • 현재의 자동 문서 분류 시스템에서는 문서분류는 지식베이스를 구축하고 전문가가 클레스의 분류 주제어를 수동 입력함으로써 이루어진다. 이것은 대단히 어렵고 번거로운 일이며 많은 시간과 노력이 소요되고 지속적으로 이루어지기 힘들다. 본 논문에서는 지식베이스와 문서의 구조적 정보, 통계적 정보, 키워드 간의 응집도를 이용하여 자동 문서 분류를 위한 분류 주제어의 자동 증식 방법을 제안한다.

  • PDF

An Automatic Document Classification with Bayesian Learning (베이지안 학습을 이용한 문서의 자동분류)

  • Kim, Jin-Sang;Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • As the number of online documents increases enormously with the expansion of information technology, the importance of automatic document classification is greatly enlarged. In this paper, an automatic document classification method is investigated and applied to UseNet 20 newsgroup articles to test its efficacy. The classification system uses Naive Bayes classification algorithm and the experimental result shows that a randomly selected newsgroup arcicle can be classified into its own category over 77% accuracy.

  • PDF

Feature Selection for Document Classifier for IT documents based on SVM (SVM 기반 기술정보 문서분류를 위한 특징 선택 기법)

  • Kang, Yun-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.577-580
    • /
    • 2002
  • 인터넷상의 정보의 급증에 따라 필요한 정보를 발견하고 관련된 정보를 조직화하기가 더욱 어려워지고 있으며 정보 접근의 부하를 줄이기 위한 효율적인 문서 분류의 중요성 및 필요성이 증가하고 있다. 본 논문에서는 디렉토리 내의 학습 문서 집합을 기반으로 구성된 디렉토리 내의 대표 용어 집합으로 구성된 모델을 학습 및 분류하기 위해 SVM을 사용한다. 문서분류를 위해 정보통신 웹 디렉토리 내의 문서로부터 추출된 용어 집합을 기반으로 학습을 수행한 후 문서 분류를 수행한다. 또한 TFiDF를 기반으로 특징을 표현하기 위해 벡터공간 모델을 사용하였고 이를 기반으로 성능 평가를 수행한다.

  • PDF

An Efficient Selection Method for Document Classification Based On Singular Value Decompostion (문서분류에서 SVD(Singular Value Decompotion)기법에 기초한 효율적인 특징 선택방법 연구)

  • Li, Cheng-hua;Byun, Dong Ryul;Park, Soon Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.321-322
    • /
    • 2009
  • 본 논문에서는 문서분류를 위하여 SVD(Singular Value Decomposition)을 이용한 효율적인 특징 선택 방법을 제안한다. 분류기 알고리즘은 문서를 효과적으로 분류할 수 있지만 분류기에 입력되는 특징공간이 너무 크다는 단점이 있다. SVD를 이용하면 입력 데이터의 차원을 줄여줄 수 있으며 문서와 문서 사이의 관계성을 내포하는 벡터공간을 만들 수 있다. 따라서 SVD를 이용하면 문서분류의 시간과 효율을 동시에 증가시킬 수 있다. 본 논문에서는 실험을 통하여 SVD을 이용한 문서분류 시스템이 입력데이터에 대한 차원을 감소시키면서 훌륭한 분류 결과를 얻을 수 있음을 보여준다.

  • PDF

사용자 의도 정보를 사용한 웹문서 분류

  • Jang, Yeong-Cheol
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • /
    • pp.292-297
    • /
    • 2008
  • 복잡한 시맨틱을 포함한 웹 문서를 정확히 범주화하고 이 과정을 자동화하기 위해서는 인간의 지식체계를 수용할 수 있는 표준화, 지능화, 자동화된 문서표현 및 분류기술이 필요하다. 이를 위해 키워드 빈도수, 문서내 키워드들의 관련성, 시소러스의 활용, 확률기법 적용 등에 사용자의도(intention) 정보를 활용한 범주화와 조정 프로세스를 도입하였다. 웹 문서 분류과정에서 시소러스 등을 사용하는 지식베이스 문서분류와 비 감독 학습을 하는 사전 지식체계(a priori)가 없는 유사성 문서분류 방법에 의도정보를 사용할 수 있도록 기반체계를 설계하였고 다시 이 두 방법의 차이는 Hybrid조정프로세스에서 조정하였다. 본 연구에서 설계된 HDCI(Hybrid Document Classification with Intention) 모델은 위의 웹 문서 분류과정과 이를 제어 및 보조하는 사용자 의도 분석과정으로 구성되어 있다. 의도분석과정에 키워드와 함께 제공된 사용자 의도는 도메인 지식(domain Knowledge)을 이용하여 의도간 계층트리(intention hierarchy tree)를 구성하고 이는 문서 분류시 제약(constraint) 또는 가이드의 역할로 사용자 의도 프로파일(profile) 또는 문서 특성 대표 키워드를 추출하게 된다. HDCI는 문서간 유사성에 근거한 상향식(bottom-up)의 확률적인 접근에서 통제 및 안내의 역할을 수행하고 지식베이스(시소러스) 접근 방식에서 다양성에 한계가 있는 키워들 간 관계설정의 정확도를 높인다.

  • PDF

Automatic Document Classification by Term-Weighting Method (범주 대표어의 가중치 계산 방식에 의한 자동 문서 분류 시스템)

  • 이경찬;강승식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.475-477
    • /
    • 2002
  • 자동 문서 분류는 범주 특성 벡터와 입력 문서 벡터의 유사도 비교에 의해 가장 유사한 범주를 선택하는 방법이다. 문서 분류 시스템을 구현하기 위하여 각 범주의 특성 벡터를 정보 검색 시스템의 역파일 형태로 구축하였으며, 용어 가중치를 계산하는 방법을 달리하여 문서 분류 시스템의 정확도를 실험하였다. 실험 문서는 일간지의 신문기사들을 무작위로 추출한 문서 집합을 대상으로 하였으며, 정보 검색 모델에서 보편적으로 사용되는 TF-lDF 방식이 변형된 방식에 비해 더 나은 성능을 보였다.

  • PDF

Automatic Document Classification Based on k-NN Classifier and Object-Based Thesaurus (k-NN 분류 알고리즘과 객체 기반 시소러스를 이용한 자동 문서 분류)

  • Bang Sun-Iee;Yang Jae-Dong;Yang Hyung-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1204-1217
    • /
    • 2004
  • Numerous statistical and machine learning techniques have been studied for automatic text classification. However, because they train the classifiers using only feature vectors of documents, ambiguity between two possible categories significantly degrades precision of classification. To remedy the drawback, we propose a new method which incorporates relationship information of categories into extant classifiers. In this paper, we first perform the document classification using the k-NN classifier which is generally known for relatively good performance in spite of its simplicity. We employ the relationship information from an object-based thesaurus to reduce the ambiguity. By referencing various relationships in the thesaurus corresponding to the structured categories, the precision of k-NN classification is drastically improved, removing the ambiguity. Experiment result shows that this method achieves the precision up to 13.86% over the k-NN classification, preserving its recall.

An Automatic Text Classification Model using Association Rules (데이타마이닝 기법을 이용한 문서 자동 분류 모델)

  • 김영인;이진용;문현정;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • /
    • pp.101-108
    • /
    • 2000
  • 기업에서 보유한 전문 지식 정보가 급속도로 증가함에 따라 대량의 문서에 저장된 지식 정보를 효과적으로 탐색하여 기업 경영에 활용하기 위한 지식경영시스템 도입이 확산되고 있다. 이러한 지식경영시스템에서 핵심적인 구성 요소는 전문 분야의 지식 정보를 체계적으로 분류하고 효율적으로 검색하기 위한 지식 탐사 기법이다. 본 논문에서는 데이타마이닝 기법을 이용하여 문서를 자동적으로 분류하기 위한 새로운 모델을 제안하였다. 연관 규칙 탐사 알고리즘을 이용하여 학습용 문서 집합으로부터 세부 분야를 대표하는 색인어 집합을 구성하였다. 세부 분야별 색인어 집합에 대하여 전체 문서에 대한 비중에 따라 가중치 배열을 구성하여 문서를 자동으로 분류하기 위한 기준으로 삼았다. 임의의 문서를 자동적으로 분류하는 실험을 통하여 제안된 방법의 효율성을 검정하였다.

  • PDF

Classification of Web Documents Using Associative Word Frequency for Collaborative Filtering (협력적 필터링을 위해 연관 단어 빈도를 이용한 웹 문서 분류)

  • 하원식;정경용;정헌만;류중경;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.160-162
    • /
    • 2004
  • 기존의 웹 문서 분류 시스템서는 많은 시간과 노력을 요구하며, 연관 단어가 아닌 단일 단어만으로 웹 문서들을 분류하여 단어의 중의성을 반영하지 못해 많은 오분류가 있었다. 이러한 문제점을 해결하기 위해 본 논문에서는 협력적 필터링을 위한 연관 단어 빈도를 사용한 웹 문서 분류 방법을 제안한다. 제안된 방법에서는 웹 문서 내에서 단어들을 추출하고 빈도 가중치를 계산한다. 추출된 단어를 Apriori 알고리즘에 의해 연관 규칙을 생성하고 신뢰도에 단어 빈도 가중치를 반영한다. 수정된 신뢰도를 ARHP 알고리즘에 적용하여 연관 단어들 사이의 유사정도를 계산하고 유사 클래스를 구성한다 생성된 유사 클래스들을 기반으로 웹 문서를 $\alpha$-cut을 이용하여 분류한다 성능평가를 위해 기존의 문서 분류 방법들과 비교 평가를 하였다.

  • PDF

Hierarchical Text Categorization using Support Vector Machine (지지 벡터 기계를 이용한 계층적 문서 분류)

  • Yoon, Yong-Wook;Lee, Chang-Ki;Lee, Gary Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.7-13
    • /
    • 2003
  • 인터넷을 통해 생성, 전달되는 문서 량이 급격히 많아짐에 따라, 정보의 접근을 용이하게 하기 위한 문서의 자동 분류 기능이 절실히 요구되고 있다. SVM(Support Vector Machine)은 최근에 문서 분류에 널리 쓰이고 있는 기법으로 다른 분류기에 비하여 좋은 성능을 보여주고 있다. 하지만 SVM은 현재까지 주로 비 계층 평탄화(flat)된 분류 응용에 효과적으로 적용되어 왔다. 이와 달리 본 논문은 문서 분류에 있어서 최종 분류 class를 한번에 출력하는 비 계층 분류보다는, 비슷한 성질을 갖는 class의 집합을 계층적 구조로 묶어 분류하는 계층적 분류 기법이 보다 사람이 이해하기 쉽고 사용하기 편리하며 더 효과적이라는 것을 보이고, 실험을 통해 계층적 분류를 위한 효과적인 SVM분류기를 개발하여 비 계층 분류보다 좋은 분류 성능을 보여 줄 수 있음을 확인한다.

  • PDF