• Title, Summary, Keyword: 보-기둥요소

Search Result 207, Processing Time 0.042 seconds

Behavior of CFT Column to H-Beam Full-Scale Connections with External T-Stiffeners (T-스티프너 보강 CFT 기둥 - H형강보 실대형 접합부의 거동)

  • Kim, Young Ju;Kang, Chang Hoon;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.715-723
    • /
    • 2001
  • This paper represents the behavior of CFT column to H-beam full-scale connection with external T-stiffener. 6 specimens whose T-stiffeners which are compounded of vertical element and horizontal element were made under the parameter of the strength ratio of each elements(vertical element and horizontal element in T-stiffener) to the beam full plastic moment. The analysis-parameters demonstrated in the base of the data that we get in experiment are strength stiffness, and plastic rotational capacity. All of specimen showed stable hysteretic behavior, and the horizontal element is more critical than vertical element in strength and stiffness. The mean beam plastic rotation of all specimen except the TS-2 specimen is 2.97% rad.

  • PDF

Beam-Column Element Applicable to Nonlinear Seismic Analysis (비선형 지진 해석을 위한 보-기둥 요소)

  • Kim, Kee Dong;Ko, Man Gi;Lee, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4
    • /
    • pp.557-578
    • /
    • 1997
  • The objective of the study in this paper was to develop a beam-column element to model members with purely flexural yielding, as well as members with yielding under combined flexure and axial force during severe earthquake ground motins. The developed element can be considered as an one-component series hinge type model. It has the capability to model plastic axial deformation and changes in axial stiffness, and employs hardening rules to handle monotonic, cyclic or arbitrary loading. In general, when compared to experimental results and fiber model predictions, the element showed significantly better performance than the bilinear hinger model and could properly model the beam-column behavior of bare steel members in moment resisting frames. The developed element can more accurately predict local deformation demands and overall responses of structural systems under earthquake loadings than the bilinear hinge element.

  • PDF

Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation (균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도)

  • 김문영;윤희택;곽태영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • The governing equation and force-displacement rotations of a beam-column element on elastic foundation we derived based on variational approach of total potential energy. An exact static and dynamic 4×4 element stiffness matrix of the beam-column element is established via a generalized lineal-eigenvalue problem by introducing 4 displacement parameters and a system of linear algebraic equations with complex matrices. The structure stiffness matrix is established by the conventional direct stiffness method. In addition the F. E. procedure is presented by using Hermitian polynomials as shape function and evaluating the corresponding elastic and geometric stiffness and the mass matrix. In order to verify the efficiency and accuracy of the beam-column element using exact dynamic stiffness matrix, buckling loads and natural frequencies are calculated for the continuous beam structures and the results are compared with F E. solutions.

Experimental Study on Progressive Collapse Resisting Capacity of Reinforced Concrete Beam-Column Sub-assemblage (RC 보-기둥 요소의 연쇄붕괴 저항 거동에 대한 실험적 연구)

  • Choi, Hyun-Hoon;Kim, Jin-Koo;Park, Kyoung-Hoon;Jeon, Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.450-453
    • /
    • 2009
  • 본 논문에서는 지진하중을 고려하여 충분한 연성거동이 가능하도록 배근한 철근콘크리트 횡하중 저항 골조(내진상세)와 고정하중과 적재하중만을 고려하여 설계한 중력하중 저항 골조(일반상세)를 대상으로 외부기둥과 내부기둥에 연결된 보의 연쇄붕괴 거동을 평가하기 위한 실험을 수행하였다. 일방향 가력실험 결과에 따르면 내진상세의 경우 대변형 상태에서 보의 하단철근의 파단이후 상단 압축철근이 인장력을 부담하면서 전체 보 부재는 축인장력이 작용을 하면서 힘-변위 곡선은 상승하는 현수작용이 발현되었다. 그러나 일반상세의 경우 충분한 현수작용이 발현되기 전에 보의 주근이 정착된 외부기둥 접합부의 파괴로 인하여 저항내력이 감소하였다.

  • PDF

Suggestion on Strength Formula of Square Hollow Section Tubluar Column-to-BeamPinned Connections (각형강관 기둥-보 핀접합부의 내력식 제안)

  • Choi, Sung Mo;Lee, Seong Hui;Lee, Kwang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.525-534
    • /
    • 2006
  • Column-to-beam pinned connections can cause local moment to the web of a steel tube due to the distance of eccentricity between the row of bolts and the column flange, which possibility deteriorates the load capacity of column. In this study, a square hollow section tubular used finite element analysis of a square hollow section tubular column was carried out, and the column width and thickness, existence and non-existence of internal reinforcement, and existence and non-existence of compressive force were taken as variables to examine the load capacity deterioration of a square column caused by moment. To guarantee the reliability of the finite element results, some specimens were fabricated and tested. The yield line method was applied to suggest the strength formulas of the square tubular column to the beam pinned connections. Based on the study results, the column strength the moment of the square hollow section tubular column to the beam pined connections improved with the increase in the w to strength limitations, a no-reinforcement type of square hollow section tubular column was proposed, and if the limitation values were not satisfied, the reinforcement of the internal column was made mandatory. Therefore, the horizontal -reinforcement type considered the strength increase, and the fabrication of the square hollow section tubular column was ar column that considered its load capacity with the moment for the no-reinforcement and the horizontal-reinforcement types.

Structural Performance Evaluation of Connection with Inclined Column for Steel Structure Subjected to Vertical Loads (수직하중에 따른 강구조물 경사기둥 접합부의 구조성능평가)

  • Kim, Eun-Suk;Cho, Jeong-Hyeok;Kim, Tae-Jin;Kim, Jong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.255-258
    • /
    • 2010
  • 최근 초고층 구조물은 다양한 형태에 따른 건축 계획 및 설계에 대한 요구되어지며 이를 충족시키기 위해 다양한 구조시스템이 개발되어지고 있다. 특히 경사기둥은 구조물의 높이가 증가할수록 구조물의 면적이 점차적으로 감소하는 Tapered 형태의 비정형 초고층 구조물의 중요한 설계 및 구조요소이다. 본 논문에서는 경사기둥의 축하중에 의해 발생하는 수평력으로 인한 접합부의 영향 및 보 플랜지의 취성파괴에 대한 저항성능을 평가하기 위하여 강구조물 경사기둥 접합부에 대한 유한요소해석을 수행하였다.

  • PDF

Analytical Method on PSC I Girder with Strengthening of External Tendon (외부강선으로 보강되는 PSC I 합성거더의 해석 기법)

  • Park, Jae-Guen;Lee, Byeong-Ju;Kim, Moon-Young;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.697-704
    • /
    • 2008
  • This paper presents an analytical prediction of Nonlinear characteristics of prestressed concrete bridges by strengthened of externally tendon considering construction sequence, using unbonded tendon element and beam-column element based on flexibility method. Unbonded tendon model can represent unbounded tendon behavior in concrete of PSC structures and it can deal with the prestressing transfer of posttensioned structures and calculate prestressed concrete structures more efficiently. This tendon model made up the several nodes and segment, therefore a real tendon of same geometry in the prestressed concrete structure can be simulated the one element. The beam-column element was developed with reinforced concrete material nonlinearities which are based on the smeared crack concept. The fiber hysteresis rule of beam-column element is derived from the uniaxial constitutive relations of concrete and reinforcing steel fibers. The formulation of beam-column element is based on flexibility. Beam-column element and unbonded tendon element were be involved in A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), that were used the analysis of RC and PSC structures. The proposed numerical method for prestressed concrete structures by strengthened of externally tendon is verified by comparison with reliable experimental results.

Performance Evaluation of Steel Moment Frame and Connection including Inclined Column (경사기둥을 포함한 철골모멘트 골조 및 접합부의 성능평가)

  • Kim, Yong-Wan;Kim, Taejin;Kim, Jongho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.173-182
    • /
    • 2013
  • The building design projects which are being proceeded nowadays pursue a complex and various shape of structures, escaping from the traditional and regular shape of buildings. In this new trend of the architecture, there rises a demand of the research in the structural engineering for the effective realization of such complex-shaped buildings which disassembles the orthogonality of frames. As a distinguished characteristics of the buildings in a complex-shape, there frequently are inclined columns included in the structural frame. The inclined column causes extra axial force and bending moment at the beam-column connection so it is necessary to assess those effects on the structural behavior of the frame and the connection by experiment or analysis. However, with comparing to the studies on the normal beam-column connections, the inclined column connections have not been studied sufficiently. Therefore, this study evaluated the beam-column connections having an inclined column using nonlinear and finite element analysis method. In this paper, steel moment frames having inclined columns were analyzed by the nonlinear pushover analysis to check the global behavior and beam-column connection models were analyzed by the finite element analysis to check the buckling behavior and the fracture potentials.

Analytical Study on Hybrid Precast Concrete Beam-Column Connections (하이브리드 프리캐스트 보-기둥 접합부의 해석적 연구)

  • Choi, Chang-Sik;Kim, Seung-Hyun;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.631-639
    • /
    • 2013
  • Non-linear finite element analysis for newly developed precast concrete details for beam-to-column connection which can be used in moderate seismic region was carried out in this study. Developed precast system is based on composite structure and which have steel tube in column and steel plate in beam. Improving cracking strength of joint under reversed cyclic loading, joint area was casted with ECC (Engineering Cementitious Composites). Since this newly developed precast system have complex sectional properties and newly developed material, new analysis method should be developed. Using embedded elements and models of non-linear finite element analysis program ABAQUS previously tested specimens were successfully analyzed. Analysis results show comparatively accurate and conservative prediction. Using finite element model, effect of axial load magnitude and flexural strength ratio were investigated. Developed connection have optimized performance under axial load of 10~20% of compressive strength of column. Plastic hinge was successfully developed with flexural strength ratio greater than 1.2.

FE Analysis of Exterior Wide Beam-Column Connections with Bonded Tendon Stress (부착된 프리스트레스 넓은 보-기둥 외부접합부의 유한요소해석)

  • Lee, Moon-Sung;Choi, Yun-Cheul;Lim, Jaei-Hyung;Moon, Jeong-Ho;Choi, Chang-Sick
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.307-315
    • /
    • 2008
  • Post-tensioned precast concrete system (PPS) consists of U-shaped precast wide beams and concrete column. The continuity of beam-column joint is provided with the topping concrete on the PC shell beam and post-tensioning. Nonlinear analysis was conducted, using ANSYS, a finite-element analysis program, to obtain data for determining the characteristics of the structure and to allow various parametric analyses for post-tensioned wide beam-column connections. In this analysis, the Solid 65 element was used, in which concrete element had 8 nodes and each node had 3 degrees of freedomIn. Solid 65, the shear-transfer factor reflects a decrease of shear strength for the positions with cracks, as an impact factor to make the analysis value approximate the experiment value. In this study, the behavior of test specineus were most closely predicted to the experimental results, when the shear-transfer coefficient 0.85 was used for a closed crack, and 0.2 was used for an open crack.