The simultaneous operation of multiple UAV's makes it possible to enhance the mission accomplishment efficiency. In order to achieve this, easily scalable control algorithms are required, and swarm intelligence having such characteristics as flexibility, robustness, decentralized control, and self-organization based on behavioral model comes into the spotlight as a practical substitute. Recently, evolutionary robotics is applied to the control of UAV's to overcome the weakness of difficulties in the logical design of behavioral rules. In this paper, a neural network controller evolved by evolutionary robotics is applied to the control of multiple UAV's which have the mission of searching limited area. Several numerical demonstrations show the proposed algorithm has superior results to those of behavior based neural network controller which is designed by intuition.