• Title, Summary, Keyword: 복합명사

Search Result 142, Processing Time 0.043 seconds

Korean Base-Noun Extraction and its Application (한국어 기준명사 추출 및 그 응용)

  • Kim, Jae-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.613-620
    • /
    • 2008
  • Noun extraction plays an important part in the fields of information retrieval, text summarization, and so on. In this paper, we present a Korean base-noun extraction system and apply it to text summarization to deal with a huge amount of text effectively. The base-noun is an atomic noun but not a compound noun and we use tow techniques, filtering and segmenting. The filtering technique is used for removing non-nominal words from text before extracting base-nouns and the segmenting technique is employed for separating a particle from a nominal and for dividing a compound noun into base-nouns. We have shown that both of the recall and the precision of the proposed system are about 89% on the average under experimental conditions of ETRI corpus. The proposed system has applied to Korean text summarization system and is shown satisfactory results.

Korean Compound Noun Decomposition and Semantic Tagging System using User-Word Intelligent Network (U-WIN을 이용한 한국어 복합명사 분해 및 의미태깅 시스템)

  • Lee, Yong-Hoon;Ock, Cheol-Young;Lee, Eung-Bong
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.63-76
    • /
    • 2012
  • We propose a Korean compound noun semantic tagging system using statistical compound noun decomposition and semantic relation information extracted from a lexical semantic network(U-WIN) and dictionary definitions. The system consists of three phases including compound noun decomposition, semantic constraint, and semantic tagging. In compound noun decomposition, best candidates are selected using noun location frequencies extracted from a Sejong corpus, and re-decomposes noun for semantic constraint and restores foreign nouns. The semantic constraints phase finds possible semantic combinations by using origin information in dictionary and Naive Bayes Classifier, in order to decrease the computation time and increase the accuracy of semantic tagging. The semantic tagging phase calculates the semantic similarity between decomposed nouns and decides the semantic tags. We have constructed 40,717 experimental compound nouns data set from Standard Korean Language Dictionary, which consists of more than 3 characters and is semantically tagged. From the experiments, the accuracy of compound noun decomposition is 99.26%, and the accuracy of semantic tagging is 95.38% respectively.

Nominal Compound Analysis Using Statistical Information and WordNet (통계정보와 WordNet을 이용한 복합명사 분석)

  • 류민홍;나동열;장명길
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • /
    • pp.33-40
    • /
    • 2000
  • 복합명사의 한 구조는 구성 명사간의 수식관계의 집합이라고 본다. 한 복합 명사에 대하여 가능한 여러 구조 중에서 올바른 구조를 알아 내는 것이 본 논문의 목표이다. 이를 위하여 우리는 최근에 유행하는 통계 기반 분석 기법을 이용한다. 먼저 우리의 복합 명사 분석 asn제에 알맞은 통계 모델을 개발하였다. 이 모델을 이용하면 분석하려는 복합명사의 가능한 분석 구조바다 확률값을 얻게 된다. 그 다음 가능한 구조들 중에서 가장 확률값이 큰 구조를 복합구조로 선택한다. 통계 기반 기법에서 항상 문제가 되는 것이 데이터 부족문제이다. 우리는 이를 해결하기 위해 개념적 계층구조의 하나인 워드넷(WordNet)을 이용한다.

  • PDF

A Method of Word Sense Disambiguation for Korean Complex Noun Phrase Using Verb-Phrase Pattern and Predicative Noun (기계 번역 의미 대역 패턴을 이용한 한국어 복합 명사 의미 결정 방법)

  • Yang, Seong-Il;Kim, Young-Kil;Park, Sang-Kyu;Ra, Dong-Yul
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.246-251
    • /
    • 2003
  • 한국어의 언어적 특성에 의해 빈번하게 등장하는 명사와 기능어의 나열은 기능어나 연결 구문의 잦은 생략현상에 의해 복합 명사의 출현을 발생시킨다. 따라서, 한국어 분석에서 복합 명사의 처리 방법은 매우 중요한 문제로 인식되었으며 활발한 연구가 진행되어 왔다. 복합 명사의 의미 결정은 복합 명사구 내 단위 명사간의 의미적인 수식 관계를 고려하여 머리어의 선택과 의미를 함께 결정할 필요가 있다. 본 논문에서는 정보 검색의 색인어 추출 방법에서 사용되는 복합 명사구 내의 서술성 명사 처리를 이용하여 복합 명사의 의미 결정을 인접 명사의 의미 공기 정보가 아닌 구문관계에 따른 의미 공기 정보를 사용하여 분석하는 방법을 제시한다. 복합 명사구 내에서 구문적인 관계는 명사구 내에 서술성 명사가 등장하는 경우 보-술 관계에 의한 격 결정 문제로 전환할 수 있다. 이러한 구문 구조는 명사 의미를 결정할 수 있는 추가적인 정보로 활용할 수 있으며, 이때 구문 구조 파악을 위해 구축된 의미 제약 조건을 활용하도록 한다. 구조 분석에서 사용되는 격틀 정보는 동사와 공기하는 명사의 구문 관계를 분석하기 위해 의미 정보를 제약조건으로 하여 구축된다. 이러한 의미 격틀 정보는 단문 내 명사들의 격 결정과 격을 채우는 명사 의미를 결정할 수 있는 정보로 활용된다. 본 논문에서는 현재 개발중인 한영 기계 번역 시스템 Tellus-KE의 단문 단위 대역어 선정을 위해 구축된 의미 대역패턴인 동사구 패턴을 사용한다. 동사구 패턴에 기술된 한국어의 단문 단위 의미 격 정보를 사용하는 경우, 격결정을 위해 사용되는 의미 제약 조건이 복합 명사의 중심어 선택과 의미 결정에 재활용 될 수 있으며, 병렬말뭉치에 의해 반자동으로 구축되는 의미 대역 패턴을 사용하여 데이터 구축의 어려움을 개선하고자 한다. 및 산출 과정에 즉각적으로 활용될 수 있을 것이다. 또한, 이러한 정보들은 현재 구축중인 세종 전자사전에도 직접 반영되고 있다.teness)은 언화행위가 성공적이라는 것이다.[J. Searle] (7) 수로 쓰인 것(상수)(象數)과 시로 쓰인 것(의리)(義理)이 하나인 것은 그 나타난 것과 나타나지 않은 것들 사이에 어떠한 들도 없음을 말한다. [(성중영)(成中英)] (8) 공통의 규범의 공통성 속에 규범적인 측면이 벌써 있다. 공통성에서 개인적이 아닌 공적인 규범으로의 전이는 규범, 가치, 규칙, 과정, 제도로의 전이라고 본다. [C. Morrison] (9) 우리의 언어사용에 신비적인 요소를 부인할 수가 없다. 넓은 의미의 발화의미(utterance meaning) 속에 신비적인 요소나 애정표시도 수용된다. 의미분석은 지금 한글을 연구하고, 그 결과에 의존하여서 우리의 실제의 생활에 사용하는 $\ulcorner$한국어사전$\lrcorner$ 등을 만드는 과정에서, 어떤 의미에서 실험되었다고 말할 수가 있는 언어과학의 연구의 결과에 의존하여서 수행되는 철학적인 작업이다. 여기에서는 하나의 철학적인 연구의 시작으로 받아들여지는 이 의미분석의 문제를 반성하여 본다.반인과 다르다는 것이 밝혀졌다. 이 결과가 옳다면 한국의 심성 어휘집은 어절 문맥에 따라서 어간이나 어근 또는 활용형 그 자체로 이루어져 있을 것이다.으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract 농도(濃度)가 증가(增加)함에 따라 단백질(蛋白質) 함량(含量)도 증가(增加)하였다. 7. CHS-13 균주(菌株)의 RNA 함량(

  • PDF

An Analysis of the Hierarchical Agglomerative Clustering based on various Compound Noun Indexing Method (복합명사 분리 색인 방법이 문서 클러스터링에 미치는 영향 분석)

  • 양명석;최성필
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.697-699
    • /
    • 2002
  • 본 논문에서는 복합명사에 대한 색인 방법을 다각적으로 적용하여 계층적 결함 문서 클러스터링 시스템의 결과를 분석하고자 한다. 우선 한글 색인 엔진과 HAC(Hierarchical Agglumerative Clustering) 엔진에 대해서 설명하고 한글 색인엔진에서 제공되는 세가지 복합명사 분석 모드에 대해서 설명한다. 또한 구현된 클러스터링 엔진의 특징과 속도 향상을 위한 기법 등을 설명한다. 실험에서는 다양한 요소를 가지고 클러스터링된 문서 집합에 대한 분석 결과를 보인다. 실험 결과에 대한 분석에서 복합명사에 대한 색인 방법이 문서 클러스터링의 결과에 직접적인 영향을 준다는 것을 보여준다.

  • PDF

Korean Composed Noun Phrase Chunking Using CRF (CRF를 이용한 한국어 문장의 복합명사 상당어구 묶음)

  • Park, Byul;Seon, Choong-Nyoung;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.90-93
    • /
    • 2011
  • 구분분석은 문장을 분석하여 문장의 구문 구조를 밝히는 작업으로, 문장이 길어질수록 문장의 중의성이 높아져 구문분석 복잡도를 증사시키고 성능이 떨어진다. 구문분석의 복잡도를 감소시키기 위한 방법 중 하나로 구묶음을 하는데 본 논문에서는 하나의 명사처럼 쓰일 수 있는 둘 이상의 연속된 명사, 대명사, 수사, 숫자와 이를 수식하는 관형사, 접두사 및 접미사를 묶어서 복합명사 상당어구라고 정의하고 복합명사 상당어구 인식 시스템을 제안한다. 본 논문은 복합명사 상당어구 인식을 기계학습을 이용한 태그 부착 문제로 간주하였다. 문장 내 띄어쓰기, 어절의 어휘 정보, 어절 내 형태소들의 품사 정보와 품사-어휘 정보를 함께 자질로 사용하였다. 실험을 위하여 세종 구문분석 말뭉치 7만여 문장을 학습과 평가에 사용했으며, 실험결과는 95.97%의 정확률과 95.11%의 재현율, 95.54%의 $F_1$-평가치를 보였고, 구문분석의 전처리로써 사용하였을 때 구문분석의 성능과 속도가 향상됨을 보였다.

  • PDF

Error-driven Noun-Connection Rule Extraction for Morphological Analysis (오류에 기반한 복합명사 좌우접속규칙 사전 구축)

  • Lee, Kong Joo;Lee, Songwook
    • Journal of the Korean Society of Marine Engineering
    • /
    • v.36 no.8
    • /
    • pp.1123-1128
    • /
    • 2012
  • The goal of this research is to develop an error-driven noun-connection rules which is used for breaking complicate nouns in Korean morphology analysis module. We collected complicate nouns from Web sites, and analyzed them by CnuMa. Whenever we find errors from outputs of the analyzer, we write noun-connection rules to correct the errors. The noun-connection rules are devised by considering left/right contexts in compound nouns. The error-driven noun-connection rules are helpful in improving precision and recall of a Korean morphology analyzer, CnuMa by 2.8% and 10.8%, respectively.

Korean Compound Noun Decomposition Only Using Syllabic Information (음절 정보만 이용한 한국어 복합 명사 분해)

  • Park, Seong-Bae;Zhang, Byoung-Tak
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.33-39
    • /
    • 2003
  • 한국어에서는 복합 명사 생성이 매우 자유스럽다. 즉, 독립된 명사를 연속으로 붙여 쓰는 것이 가능하다. 하지만, 기계번역이나 정보 검색과 같이 복합 명사를 처리하는 시스템에서 정확한 분석을 위해서는 복합 명사를 다시 단일 명사들로 분해하는 과정이 필요하다. 본 논문에서는 한국어 복합 명사 분해를 위해 GECORAM(GEneralized Combination of Rule-based learning And Memory-based learning) 알고리듬을 제시한다. 규칙 학습 알고리듬의 장점은 생성된 학습 결과를 사람이 쉽게 이해할 수 있다는 점이지만, 다른 지도학습 알고리듬에 비해 성능이 떨어진다는 단점이 있다. 본 논문에서는 이를 위해 규칙 학습 알고리듬과 기억기반 학습을 결합하는 방법을 제시한다. 실험 결과, GECORAM 알고리듬은 규칙 기반 학습이나 기억 기반 학습을 단독으로 쓰는 경우보다 높은 정확도를 보였다.

  • PDF

A Study on the Similarity of Compound Nouns and Noun Phrases in Sentences (문장의 복합명사와 명사구의 유사정도에 대한 고찰)

  • 이태영
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • /
    • pp.43-46
    • /
    • 1999
  • 문장간의 유사정도와 명사구나 복합어간에서 유사한 그룹을 식별하는 연구를 수행하였다. 명사 어구는 형태소의 대체나 생략 등으로, 문장은 절간의 전체적 일치와 부분적 일치로 유사도를 측정하였다. 유사도가 50%이상되는 경우들에 유사성을 인정하였다.

  • PDF

Alleviating Syntactic Term Mismatches in Korean Information Retrieval (한국어정보검색에서 구문적 용어불일치 완화방안)

  • Yun, Bo-Hyun;Kim, Sang-Bum;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.143-149
    • /
    • 1998
  • 한국어 정보검색에서 복합명사와 명사구로 발생하는 색인어와 질의어간의 구문적 용어 불일치는 많은 문제를 일으켜왔다. 본 논문에서는 복합명사 분해와 명사구 정규화를 함께 수행하여 유사도 측정값을 적당히 유지함으로써 재현율을 저하시키지 않고서 정확률을 향상시킬 수 있는 구문적 용어불일치 완화방안을 제시하고자 한다 색인모듈에서는 통계정보를 이용하여 복합명사를 분해하고, 의존관계를 이용하여 명사구를 정규화한다. 분해되고 정규화된 키워드에 경계정보 '/'가 할당되고, 가중치가 계산된다. 검색모듈에서는 경계정보를 이용하여 부분일치를 고려하는 유사도 계산을 수행한다. KTSET 2.0으로 실험한 결과, 제안한 방법은 구문적 용어불일치를 완화할 수 있으며, 재현율을 저하시키지 않고서 정확률을 향상시킬 수 있음을 보인다.

  • PDF