• Title, Summary, Keyword: 복합명사

Search Result 142, Processing Time 0.034 seconds

A Study on Automatic Indexing System Using natural language Processing, Statistical Technique, Relevance Verification (자연어 처리, 통계적 기법, 적합성 검증을 이용한 자동색인 시스템에 관한 연구)

  • Yu, Chun-Sik;U, Seon-Mi;Yu, Cheol-Jung;Lee, Jong-Deuk;Gwon, O-Bong;Kim, Yong-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.6
    • /
    • pp.1552-1562
    • /
    • 1998
  • 형태소 분석(Morphological Analysis)과 같은 언어학적 처리에 의존하는 기존의 한국어 문헌에 대한 자동색인 기법들은 품사의 애매모호함이나 복합명사의 처리 등으로 부담(overhead)이 크다. 또한 불용어 처리에 사용되는 불용어 리스트가 대상 문헌의 주제 분야별로 따로 구축되어야 하며 그 크기가 방대하다는 문제점이 있다. 이러한 문제점들을 해결하기 위해, 본 논문에서는 각 문헌의 텍스트에 대해 복합명사 처리나 애매모호함에 대한 엄격한 분석을 수행하지 않는 간단한 형태의 형태소 분석을 수행하여 단순명사들을 추출한다. 그런 후 이들 단순명사들을 이용하여 유한 오토마타(Finite Automata)를 구성하고, 구성된 유한 오토마타와 각 명사의 단어빈도(Term Frequency)에 의해 각 색인어 후보들의 중요도를 계산하는 자동색인 기법을 제안한다. 그 결과 품사의 애매모호함에 대한 처리나 복합명사의 처리에따른 부담을 줄일 수 있었으며, 선정된 색인어들과 수작업으로 선정한 색인어들의 비교 실험에 의해 제안한 자동색인 기법의 성능을 검증하였다.

  • PDF

A Noun Extractor based on Dictionaries and Heuristic Rules Obtained from Training Data (학습데이터를 이용하여 생성한 규칙과 사전을 이용한 명사 추출기)

  • Jang, Dong-Hyun;Myaeng, Sung-Hyon
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.151-156
    • /
    • 1999
  • 텍스트로부터 명사를 추출하기 위해서 다양한 기법이 이용될 수 있는데, 본 논문에서는 학습 데이터를 이용하여 생성한 규칙과 사전을 이용하는 단순한 모델을 통해 명사를 효과적으로 추출할 수 있는 기법에 대하여 기술한다. 사용한 모델은 기본적으로 명사, 어미, 술어 사전을 사용하고 있으며 명사 추정은 학습 데이터를 통해 생성한 규칙을 통해 이루어진다. 제안한 방법은 복잡한 언어학적 분석 없이 명사 추정이 가능하며, 복합명사 사전을 이용하지 않고 복합 명사를 추정할 수 있는 장점을 지니고 있다. 또한, 명사추정의 주 요소인 규칙이나 사전 등록어의 추가, 갱신 등이 용이하며, 필요한 경우에는 특정 분야의 텍스트 분석을 위한 새로운 사전의 추가가 가능하다. 제안한 방법을 이용해 "제1회 형태소 분석기 및 품사 태거 평가대회(MATEC '99')"의 명사 추출기 분야에 참가하였으며, 본 논문에서는 성능평가 결과를 제시하고 평가결과에 대한 분석을 기술하고 있다. 또한, 현재의 평가기준 중에서 적합하지 않은 부분을 규정하고 이를 기준으로 삼아 자체적으로 재평가한 평가결과를 제시하였다.

  • PDF

Breaking Compound Nouns for Better Indexing (효율적인 색인을 위한 복합 명사의 분해)

  • Park, Soo-Jun;Lee, Hyun-A;Jang, Myung-Gil;Park, Jae-Deuk;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.42-48
    • /
    • 1996
  • 정보검색에서의 효율적인 복합명사의 분석은 정확도와 재현율의 향상을 통해 색인의 질을 높여준다. 복합명사의 분석은 많은 노력이 요구되는 작업이다. 본 논문은 간단한 분해규칙을 이용하여 복합명사의 의미해석을 대신하였다. 실험을 위해 동아일보 사설을 대상으로 복합명사를 추출하고 이를 도출된 분해규칙을 이용하여 분해하였다. 실험을 통해 평균 96.2%의 분해 성공률을 보였다.

  • PDF

Disambiguation on the Analysis of Korean Complex Nominals, Using Probabilistic CFG Parsing (확률적 CFG 파싱을 활용한 한국어 복합명사 구조 분석의 중의성 해소)

  • Kim, Dong-Sung
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.61-66
    • /
    • 2011
  • 본 논문은 한국어 복합명사 구조의 분석을 목적으로 한다. 연구는 이론 언어학뿐만이 아니라 정보처리, 정보검색과 같은 언어의 전산적 처리에서도 중요한다. 복합명사 구조는 크게 외심구조와 내심구조로 나뉘며 내심구조의 경우에 좌분지나 우분지 구조로 분석이 되어야 하는 중의성이 있다. 기존의 Lauer 모델은 사전적 정보에서 발견되는 확률 정보를 구조 정보에 연결하기 위한 모델로 의존모델과 인접모델을 제시하였다. 본 연구에서는 구조에 기반을 둔 확률정보를 결합하기 위한 확률적 CFG 파싱 방법을 활용하고자 하였다. 이를 위해서 실제 코퍼스상에서 발견되는 복합명사 패턴을 대상으로 구조적 분석을 화자 직관을 통해서 진행하고, 이를 다시 Lauer 모델과 확률적 CFG 파싱 방법 응용과 비교해 보았다. 결과적으로 화자 직관에 가장 일치한 예측을 하였으며, 구조에 대한 정보 해석이 가능하였다.

  • PDF

Chunking of Contiguous Nouns using Noun Semantic Classes (명사 의미 부류를 이용한 연속된 명사열의 구묶음)

  • Ahn, Kwang-Mo;Seo, Young-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.10-20
    • /
    • 2010
  • This paper presents chunking strategy of a contiguous nouns sequence using semantic class. We call contiguous nouns which can be treated like a noun the compound noun phrase. We use noun pairs extracted from a syntactic tagged corpus and their semantic class pairs for chunking of the compound noun phrase. For reliability, these noun pairs and semantic classes are built from a syntactic tagged corpus and detailed dictionary in the Sejong corpus. The compound noun phrase of arbitrary length can also be chunked by these information. The 38,940 pairs of 'left noun - right noun', 65,629 pairs of 'left noun - semantic class of right noun', 46,094 pairs of 'semantic class of left noun - right noun', and 45,243 pairs of 'semantic class of left noun - semantic class of right noun' are used for compound noun phrase chunking. The test data are untrained 1,000 sentences with contiguous nouns of length more than 2randomly selected from Sejong morphological tagged corpus. Our experimental result is 86.89% precision, 80.48% recall, and 83.56% f-measure.

A Compound Term Retrieval Model Using Statistical lnformation (통계적 정보를 이용한 복합명사 검색 모델)

  • 박영찬;최기선
    • Korean Journal of Cognitive Science
    • /
    • v.6 no.3
    • /
    • pp.65-81
    • /
    • 1995
  • Compound nouns as a composition of multiple nouns exhibit diverse occurence patterns in the texts and have varying degree of meaning coherence.The problem of compound nouns in information retrieval is to find a method to represent and identify the compositive patterns of each words.This paper explains how the cooccurrence patterns are related with the meaning of each compound noun and the information of such relations that can be mechanically acquired from texts is used in ranking the candidated documents for a given query.The main theme of the paper is that compound nouns can be categorized according to their occurrence patterns of simple nouns and these occurrence patterns can be formalized by statistical analysis without large dictionary or complex compositive rules.Our suggested model achieved about 7.75% improvement over the best precision of the other methods at each recall measurements on Korean test collection.

  • PDF

A Study on Extraction for Korean Information Retrieval System (한국어 정보검색을 위한 색인어 추출방법에 관한 연구)

  • Choi, Soon-Woo;Kim, Sang-Bum;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.73-80
    • /
    • 2003
  • 본 논문에서는 색인 방법에 따른 한국어 정보검색시스템의 성능차이를 살펴보고 이를 분석하여 보다 검색성능을 높이기 위한 색인어 추출방법을 제안한다. 이를 위해 기존의 대표적인 색인법이라 할 수 있는 명사단위 색인법, 형태소 단위 색인법, 바이그램 단위 색인법, 어절단위 색인법에 대하여 실험을 통한 비교분석을 하였고, 질의별 분석을 통해 검색성능에 영향을 주는 요소들을 찾아내었다. 그 결과 빈칸, 면사분해, 명사, 동사, 형용사, 숫자등을 포함한 실질 형태소, 형식형태소의 제거, 외래어 등 추정명사의 분해 및 발음확장, 후방 단음절 명사로 구성된 복합명사의 분해, 의미를 변절시키는 바이그램 제거, 분해된 명사 수에 따른 복합명사 첨가 및 제거 등이 그 요소임을 확인할 수 있었다. 이를 토대로 각 색인법의 장점을 살려 색인 및 검색을 수행하여 보았다. 제안하는 방법은 동일한 실험집합에서 일관성 있은 성능향상을 가져다 줌을 알 수 있었다.

  • PDF

The Experimental Study on the Relationship between Hierarchical Agglomerative Clustering and Compound Nouns Indexing (계층적 결합형 문서 클러스터링 시스템과 복합명사 색인방법과의 연관관계 연구)

  • Cho Hyun-Yang;Choi Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.38 no.4
    • /
    • pp.179-192
    • /
    • 2004
  • In this paper, we present that the result of document clustering can change dramatically with respect to the different ways of indexing compound nouns. First of all, the automatic indexing engine specialized for Korean words analysis, which also serves as the backbone engine for automatic document clustering system, is introduced. Then, the details of hierarchical agglomerative clustering(HAC) method, one of the widely used clustering methodologies in these days, was illustrated. As the result of observing the experiments, carried out in the final part of this paper, it comes to the conclusion that the various modes of indexing compound nouns have an effect on the outcome of HAC.

Weighting Methods for Compound Nouns in Patent Retrieval System (특허 문헌 검색에서 복합명사 가중치 부여 방법)

  • 손기준;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.895-897
    • /
    • 2004
  • 문서 검색 시스템에서 특정 주지에 관한 문서를 검색하기 위한 색인어의 가중치 부여 방법으로 단순빈도와 역문헌빈도에 의한 가중치 부여 방법을 주로 이용한다 하지만 빈도 정보만을 이용한 방법은 성능 및 정확도의 향상에 한계가 있다. 이에 본 논문에서는 특허 문헌 검색 시스템의 검색 효율을 높이기 위해 자주 출현하는 복합명사의 재출현 양상과 복합명사의 역할변화에 따른 가중치 부여 방법을 제안한다 본 연구에서 제안한 가중치 부여 방법을 이용하여 실험한 결과 단순빈도와 역문헌빈도 정보를 이용한 방법보다 더 나은 성능을 보였다 .

  • PDF

A Compound Noun Processing in the Two-level Morphological Analysis of Korean (Two-level 한국어 형태소 해석에서의 복합명사 처리)

  • 이근용;박기선;이용석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.505-507
    • /
    • 2002
  • Two-level 형태소 해석 모델은 단어들이 결합할 때 발생하는 철자변화를 처리하는 언어 독립적인 형태소 해석 모델이다. 그러나 한국어의 경우 활용과 첨용이 자유로운 교착어에 속하며 음절단위 표현법 때문에 two-level 모델을 이용한 형태소 해석 방법보다는 언어 종속적인 형태소 해석 방법을 사용하여 왔다. 한국어 용언과 다양한 변형을 처리하기 위한 two-level 규칙이 표현되었지만, 형태소 해석에서 사용하기 위해서 필요한 복합명사 치리와 미지어 처리에 대한 적절한 방법이 아직 계시되지 않았다. 본 논문은 어절 생성 규칙을 이용한 사전 구성을 이용하여 two-level 모델에서의 한국어 복합명사의 처리에 대해서 다루고, two-level 모델에서 한국어 복합명사 처리가 가능함을 보이고자 한다.

  • PDF