• Title, Summary, Keyword: 분할 링 공진기

Search Result 11, Processing Time 0.057 seconds

The Open Loop Multiple Split Ring Resonator Based Voltage Controlled Oscillator in 0.13 um CMOS (개방 루프 다중 분할 링 공진기를 이용한 0.13 um 전압 제어 발진기 설계)

  • Kim, Hyoung-Jun;Choi, Jae-Won;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.202-207
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator(VCO) using the open loop multiple split ring resonator(OLMSRR) is presented for improving the phase noise, implemented in 130 nm CMOS technology. Compared with the conventional CMOS LC resonator, the proposed CMOS OLMSRR has the larger coupling coefficient value, which makes a higher Q-factor, and has improved the phase noise of the VCO. The proposed CMOS VCO based OLMSRR has the phase noise of -99.67 dBc/Hz @ 1 MHz in the oscillation frequency. Compared with the VCO using the conventional CMOS LC resonator and the proposed VCO using the CMOS OLMSRR structure has been improved in 7 dB. The prototype 24 GHz CMOS VCO is implemented in 130 nm CMOS and occupies a compact die area of $0.7\;mm{\times}0.9\;mm$.

Design of Compact CPW-fed Slot Antenna Using Split-Ring Resonators (분할 링 공진기를 이용한 소형 CPW급전 슬롯 안테나 설계)

  • Park, Jin-Taek;Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2351-2358
    • /
    • 2014
  • In this paper, a design method for a compact CPW-fed slot antenna using SRRs is studied. The structure of the proposed slot antenna is a rectangular slot antenna loaded with SRR conductors inside the slot to reduce the antenna size. Optimal design parameters are obtained by analyzing the effects of the gap between the SRR conductors and slot, and the width of the SRR conductors on the input VSWR characteristic. The optimized compact slot antenna operating at 2.45 GHz band is fabricated on an FR4 substrate with a dimension of 36 mm by 30 mm. The length of the proposed compact slot antenna is reduced to 14.3% compared to that of a conventional rectangular slot antenna. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.4-2.49 GHz for a VSWR < 2, and measured gain of 2.3 dBi at 2.45 GHz.

Compact Dual-band CPW-fed Slot Antenna Using Split-Ring Resonator (분할 링 공진기를 이용한 소형 이중 대역 CPW-급전 슬롯 안테나)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2526-2533
    • /
    • 2015
  • In this paper, a design method for a compact dual-band coplanar waveguide-fed slot antenna using SRR(split-ring resonator) conductor is studied. The SRR conductor is loaded inside a rectangular slot of the proposed antenna for dual-band operation. When the SRR conductor is inserted into the slot, the original rectangular slot is divided into a rectangular loop region and a rectangular slot region, and frequency bands are created by the loop and slot, separately. A prototype of the proposed dual-band slot antenna operating at 2.45 GHz WLAN band and 3.40-5.35 GHz band is fabricated on an FR4 substrate with a dimension of 30 mm by 30 mm. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.38-2.51 GHz and 3.32-5.38 GHz for a voltage standing wave < 2, and measured gain is 1.7 dBi at 2.45 GHz, and it ranges 2.4-3.2 dBi in the second band.

Design of Microstrip Defected Ground Structure-based Sensor with Enhanced-Sensitivity for Permittivity Measurement (유전율 측정을 위한 고감도 마이크로스트립 결함 접지 구조 기반 센서 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • The Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 2019
  • In this paper, a design method for an enhanced-sensitivity microwave sensor based on microstrip defected ground structure was studied for the permittivity measurement of planar dielectric substrates. The proposed sensor was designed by modifying the ridge structure of an H-shaped aperture into the shape of a capacitor symbol. The sensitivity of the proposed sensor was compared with that of a conventional sensor based on a double-ring complementary split ring resonator(DR-CSRR). Two sensors were designed and fabricated on a 0.76-mm-thick RF-35 substrate so that the transmission coefficient would resonate at 1.5 GHz in the absence of the substrate under test. Five types of taconic substrates with a relative permittivity ranging from 2.17 to 10.2 were selected asthe substrate under test. Experiment results show that the sensitivity of the proposed sensor, which is measured by the shift in the resonant frequency of the transmission coefficient, is 1.31 to 1.62 times higher than that of the conventional DR-CSRR-based sensor.

Electrically Small Eighth-Mode Substrate-Integrated Waveguide(EMSIW) Antenna Loading Complementary Split Ring Resonator(CSRR) (상보적 분할 링 공진기를 이용한 전기적으로 작은 1/8 모드 기판 집적형 도파관 안테나)

  • Kang, Hyunseong;Sam, Somarith;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.686-693
    • /
    • 2013
  • Based on a substrate integrated waveguide(SIW) and a complementary split ring resonator(CSRR), electrically small antennas are proposed in this paper. Antenna's electrical size is reduced by introducing both CSRR and the eighth-mode substrate integrated waveguide(EMSIW). The EMSIW occupies only 12.5 % of the conventional SIW at the same dominant resonant frequency. In addition, the resonant frequency of the antenna is varied by rotating the CSRR on the EMSIW while keeping the same radiation patterns. The resonant frequency is changed from 4.74 GHz to 5.07 GHz by varying orientation of the CSRR from 0 to 360 degree. Unidirectional radiation patterns are observed and the measured peak gains are from 4.50 to 5.92 dBi.

A 1$\times$4 Wavelength Demultiplexer Composed of Channel Drop Structures in Photonic Crystals (광자 크리스탈의 채널 드롭 구조로 구성된 1$\times$4 파장 분할 소자)

  • 오세택;정교방
    • Proceedings of the Optical Society of Korea Conference
    • /
    • /
    • pp.188-189
    • /
    • 2003
  • 어떤 특정한 주파수 범위 내에서 전자기파의 진행을 차단하는 광자 크리스탈은 광 집적회로에서 빛의 진행을 제어할 수 있는 잠재적인 능력을 가지고 있다. 따라서 최근 몇 년 동안 광자 크리스탈의 특성을 이용한 광 스위치, 광 집적회로, 광섬유, 광 분배기, 공진 캐비티, 도파로 등에 대한 연구가 활발히 이루어지고 있다. 본 논문에서는 광자 크리스탈의 두개의 선 디펙트로 구성된 도파로 사이의 공진 터널링 현상인 채널 드롭 구조를 이용하여, 새로운 1$\times$4 Demultiplexer의 구조를 제안하고 그 구현 가능성을 고찰하였다. (중략)

  • PDF

Highly Sensitive Integrated Photonic Temperature Sensor Exploiting a Polymeric Microring Resonator (폴리머 마이크로링 공진기를 이용한 고감도 집적광학형 온도센서)

  • Lee, Hak-Soon;Kim, Gun-Duk;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.224-228
    • /
    • 2008
  • A highly sensitive integrated photonic temperature sensor was proposed and developed incorporating a polymeric microring resonator. The change in the ambient temperature was estimated by observing the shift in the resonant wavelength of the resonator induced via the thermooptic effect. For the purpose of enhancing its sensitivity, the sensor was built by implementing a polymeric resonator exhibiting a high thermooptic coefficient on a silicon substrate with a small coefficient of thermal expansion. For the range of from $20^{\circ}C$ to $30^{\circ}C$ near the room temperature, the fabricated sensor yielded a sensitivity of as high as 165 ${\pm}/^{\circ}C$ and a resolution of better than $0.1^{\circ}C$. And its performance was found to be hardly affected by the variation in the refractive index of the target analyte, which was applied to the surface of the sensor. It is hence expected that the sensor could be integrated with other refractormetric optical sensors, thereby compensating for the fatal error caused by the change in the ambient temperature.

Permittivity Characteristic Analysis of Planar Substrates Using H-shaped Resonant Aperture (H-모양 공진 개구를 이용한 평면 기판의 유전율 특성 분석)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.55-56
    • /
    • 2018
  • In this paper, a method for analyzing the dielectric constant of a planar substrate is proposed. To this end, a band-stop filter was created by adding a H-shaped resonant aperture to the ground plane of a microstrip transmission line. A planar substrate of 2 mm thickness was placed behind the ground plane of the microstrip transmission line and the change of the resonant frequency with the change of the dielectric constant of the substrate was investigated. It can be seen that the change ratio of the frequency to the reference resonant frequency is larger than that of the conventional complementary split ring resonator structure.

  • PDF

Design of Compact Dual-band Slot Antenna (소형 이중 대역 슬롯 안테나 설계)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.61-62
    • /
    • 2015
  • In this paper, a design method for a dual-band compact slot antenna using SRR(split-ring resonator) conductor is studied. The SRR conductor is loaded inside of a rectangular slot of the proposed antenna for dual-band operation. Final design parameters are obtained by analyzing the effects of the gap between the SRR conductor and slot, and the width of the SRR conductor on the input reflection coefficient and gain characteristics. A prototype of the proposed dual-band slot antenna operating at 2.45 GHz WLAN band and 3.40-5.35 GHz band is designed on an FR4 substrate with a dimension of 30 mm by 30 mm.

  • PDF

Dual-Band Frequency Reconfigurable Small Eighth-Mode Substrate-Integrated Waveguide Antenna (이중 대역 주파수 가변 1/8차 소형 기판집적형 도파관 안테나)

  • Kang, Hyunseong;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • In this paper, we propose a new frequency reconfigurable dual-band antenna. By using an electronically compact eighth-mode substrate-integrated-waveguide(EMSIW) resonator, we have designed a compact antenna, which performs dual-band movement by additionally loading a complementary split ring resonator(CSRR) structure. The EMSIW and CSRR structures are designed to satisfy the bandwidths of 1.575 GHz(GPS) and 2.4 GHz(WLAN), respectively. We load the CSRR with a varactor diode to allow a narrow bandwidth and to enable the resonance frequency to continuously vary from 2.4 GHz to 2.5 GHz. Thus, we realize a channel selection function that is used in the WLAN standards. Irrespective of how a varactor diode moves, the EMSIW independently resonates so that the antenna maintains a fixed frequency of the GPS bandwidth even at different voltages. Consequently, as the DC bias voltage changes from 11.4 V to 30 V, the resonance frequency of the WLAN bandwidth continuously changes between 2.38 GHz and 2.5 GHz, when the DC bias voltage changes from 11.4 V to 30 V. We observe that the simulated and the measured S-parameter values and radiation patterns are in good agreement with each other.