• Title, Summary, Keyword: 비행

Search Result 3,782, Processing Time 0.059 seconds

A Study on the Legal and Institutional Military UAV Rules in Korea (한국의 군용 무인항공기 비행규칙에 관한 법적.제도적 운용 연구)

  • Lee, Kang-Seok;Park, Won-Tae;Im, Kwang-Hyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.2
    • /
    • pp.117-144
    • /
    • 2013
  • The MOLIT is also establishing the flight safety standards for UAV within the current Aviation Law. Accordingly the required flight criteria includes operator location, mission operation limit, equipment, etc. which are the principle and standard applied based on the airspace use for UAV. Also, general flight rules, visual flight rules, instrument flight rules are required to be applied to the actual flight. Besides, an appliance regulation needs to be arranged regarding two-way communication, ATC and communication issue, airspace and area in-flight between UAS(Unmanned Aircraft System) users. An operation of the UAV in the air significantly requires the guarantee of the aircraft's capacity, and also the standardized flight criteria. A safe and smooth use is ensured only if this criteria is applied and understood by the entire airspace users. For the purpose, a standardized military UAV flight operations criteria and a law complementary scheme.

  • PDF

A study on the acoustic loads prediction of flight vehicle using computational fluid dynamics-empirical hybrid method (하이브리드 방법을 이용한 비행 중 비행체 음향하중 예측에 관한 연구)

  • Park, Seoryong;Kim, Manshik;Kim, Hongil;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • This paper performed the prediction of the acoustic loads applied to the surface of the flight vehicle during flight. Acoustic loads during flight arise from the pressure fluctuations on the surface of body. The conventional method of predicting the acoustic loads in flight uses semi-empirical method derived from theoretical and experimental results. However, there is a limit in obtaining the flow characteristics and the boundary layer parameters of the flight vehicle which are used as the input values of the empirical equation through experiments. Therefore, in this paper, we use the hybrid method which combines the results of CFD (Computational Fluid Dynamics) with semi-empirical methods to predict the acoustic loads acting on flight vehicle during flight. For the flight vehicle with cone-cylinder-flare shape, acoustic loads were estimated for the subsonic, transonic, supersonic, and Max-q (Maximum dynamic pressure) condition flight. For the hybrid method, two kind of boundary layer edge estimation methods based on CFD results are compared and the acoustic loads prediction results were compared according to empirical equations presented by various researchers.

Range Safety System Operation in KSR-III Flight Test (KSR-III 비행안전 시스템 운영)

  • Ko, Jeong-Hwan;Kim, Jeong-Rae;Park, Jeong-Joo;Bang, Hee-Jin;Choi, Dong-Min;Song, Sang-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.91-97
    • /
    • 2004
  • The first Korean liquid propellant rocket KSR-III successfully finished its flight test on Nov. 28, 2002. Herein, we summarize the results of range safety system operation which is employed for the first time in flight tests of rockets developed by Korea Aerospace Research Institute(KARI). During the flight, safety-critical flight data including instantaneous impact points are monitored in realtime by range safety officers utilizing Range Safety Display Systems. The recorded screen of the display system is presented for the explanation of safety operation. In addition, comparisons are made between onboard navigation system based and radar based results in calculating instantaneous impact points, and also errors from the finally recorded impact point are described.

Instrument Flight Certification Process and Flight Test Results of Korean Utility Helicopter (한국형 기동헬기 계기비행 인증절차 및 비행시험 결과)

  • Kwon, Hyuk-Jun;Park, Jong-Hoo;Park, Jae-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • In this paper, the instrument flight certification process and flight test results of Korean Utility Helicopter (KUH) are presented. For the instrument flight certification, the suitability of installed equipments and instruments have been reviewed and verified by ground and flight tests. Next, static and dynamic stability test are conducted in accordance with FAR-29 Appendix B. The static stability is determined by the change of speed and attitude according to control inputs. The dynamic stability is evaluated by how quickly the response of the helicopter due to long and short period control inputs are decreased. The pilot workload evaluation are also carried out by simulated IMC flight tests. This paper presents the workload assessment results when some failures are occurred at cockpit instruments, engine or flight control systems as well as the normal situation. After the simulated IMC flight test is completed, actual instrument flight test are conducted in a real IMC environment according to the air traffic controls.

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

Implementation and Evaluation of Flight Tasks in Instrument Flight Simulator (계기비행 시뮬레이터에서 비행 임무의 평가 및 구현)

  • Hwang, Soo-Chan;Baek, Joong-Hwan
    • The Journal of Advanced Navigation Technology
    • /
    • v.4 no.1
    • /
    • pp.11-22
    • /
    • 2000
  • Instrument flight simulators are used for training the interpretation and operation techniques for all kinds of aircraft instruments, cockpit procedures, etc., in order that pilots cope with the situations which can be occurred in actual flight. However, the simulators developed so far are concerned about operating in same environment to actual aircraft. And little researches concentrate on developing systematic training system for basic tasks and takeoff-landing procedures, and automatic evaluation methods on the training results. Therefore, in this paper, we propose implementation and evaluation methods for flight tasks such as tasks in flight, takeoff-landing procedures and course flight.

  • PDF

Design and Experiment of Lab-scale Contrail Generator (Lab-scale 비행운 발생장치 설계 및 시험)

  • Choi, Jaewon;Ock, Gwonwoo;Kim, Sangki;Kim, Hyemin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.35-41
    • /
    • 2019
  • Contrail is a kind of cloud that is formed during the flight by vapor condensation of engine exhaust in a cold atmospheric condition. Owing to the negative effects of contrails on the environment and in military applications, several studies for contrail mitigation had been performed in developed countries. The goal of this research is to design a lab-scale contrail generator, and to validate the contrail mitigation technology suggested by previous studies. The contrail generator was made using superheated vapor and a low temperature wind tunnel. Using this generator, the ineffectiveness of ethanol and surfactant suggested in the previous paper on contrail mitigation was found experimentally.