• Title, Summary, Keyword: 설계 민감도해석

Search Result 241, Processing Time 0.087 seconds

섭동법을 이용한 구조 재설계 기법

  • 김종현;임채환
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.22-25
    • /
    • 1994
  • 종래의 재설계 방법으로는 시행착오 방법이 있다. (Fig. 1 참고). 이 방법은 설계자의 경험이나 직관 등에 의하여 설계를 변경한 후 다시 구조해석을 하여 재설계조건의 만족여부를 확인하는 방법이다. 이때 재설계조건을 만족하지 않을 경우 설계를 다시 바꾸고 구조해석으로 재설계조 건을 확인하여야 한다. 따라서 이 방법은 비효율적이고 설계조건에 쉽게 맞추기도 어렵다. 이러한 단점을 보완한 새로운 재설계방법으로 민감도 해석(Sensitivity Analysis)과 섭동법(Perturbation )에 의한 방법이 있다. 민감도 해석은 설계조건을 설계변수의 민감도로 나타내는 방법이고 섭동 법은 설계조건을 설계변수들의 함수로 나타내는 방법이다. 대형구조물의 구조해석과 구조설계 문제는 대부분 유한요소법에 의존한다. 따라서 이러한 대형구조물의 재설계 도구가 되기 위해서 쟤설계 프로그램은 유한요소해석 프로그램의 후처리 프로그램(Postprocessor)으로 개발되어야 한다. 이러한 전제조건 때문에 설계가 끝나고 유한요소해석을 행한 후 재설계를 하기 위해서 유한요소해석 모델을 사용하는 것이 바람직하다.

  • PDF

Design Sensitivity Analysis for the Vibration Characteristics of Vehicle Structure (수송체 구조물의 진동특성에 관한 설계민감도 해석)

  • 이재환
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.91-98
    • /
    • 1994
  • Design sensitivity analysis method for the vibration of vehicle structure is developed using adjoint variable method. A variational approach with complex response method is used to derive sensitivity expression. To evaluate sensitivity, FEM analysis of ship deck and vehicle structure are performed using MSC/NASTRAN installed in the super computer CRAY2S, and sensitivity computation is performed by PC. The accuracy of sensitivity is verified by the results of finite difference method. When compared to structural analysis time on CRAY2S, sensitivity computation is remarkably economical. The sensitivity of vehicle frame can be used to reduce the vibration responses such as displacement and acceleration of vehicle.

  • PDF

Parametric Sensitivity Analysis Using Fourier Transformation (푸리에 변환을 이용한 파라미터 민감도 해석)

  • Baek, Moon-Yeal;Lee, Kyo-Seung
    • Journal of the Korea Society For Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.58-64
    • /
    • 2005
  • 주파수 영역 민감도 해석법은 동적 시스템의 전달함수에 대한 설계 파라미터의 변화에 의한 효과를 파악하기 위해 사용되어 왔으며, 이때의 민감도 함수는 시스템 설계 파라미터에 대한 시스템 전달 함수의 편미분 값이다. 일반적으로 종래의 주파수 영역 민감도 해석은 직접 미분법이나 라플라스 변환이 사용되어 왔다. 라플라스 변환을 사용하는 경우에 시스템의 차수가 증가할수록 역행렬 조작은 매우 많은 시간을 필요로 하며 또한 어려운 작업이다. 본논문에서는 이러한 다점을 보완하기 위하여 푸리에변환을 이용한 민감도 기법을 제시하였다. 파라미터의 변화에 대한 진폭-주파수 특성의 민감도 해석을 간단한 2자유도 모델과 로터 다이나믹 시스템에 적용하였다.

  • PDF

형상최적설계의 기초

  • 이희각
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.16-23
    • /
    • 1994
  • 본 고에서는 형상최적설계에 대한 기초이론이 소개되었다. 재료도함수와 변분법 및 보조변수법에 기초한 형상설계민감도해석 절차는 까다로우며 함수론 등 많은 수학적인 배경을 필요로 한다. 설계민감도가 구해지면 이 정보를 필요로 하는 최적화 알고리즘을 사용하여 형상에 대한 최적해를 구할 수 있으며 그 과정은 재래식 최적설계시와 같다. 구조물 형상최적설게에 있어 형상(영역)변화의 효과는 대부분 경계에서 수직이동의 형태로 나타난다. 따라서 경계면에서 변위나 응력값 등에 대한 정확한 수치해는 성공적인 형상최적화의 중요한 관건이 된다. 따라서 구조해석을 위한 정확한 유한요소해석방법과 형상함수 그리고 경계를 나타내는 적절한 함수들을 지속적으로 개선할 필요가 있다. 반복설계과정 중에서 영역과 경계가 계속 바뀌므로 설계민감도 수치해의 정확도를 높이기 위해 경계요소법과 유한요소법에 기초를 둔 영역법 등을 사용하기도 한다.

  • PDF

Joint Tolerance Design by Minimum Sensitivity Theorem (최소민감도이론에 의한 조인트 부재의 공차설계)

  • 임오강;류재봉;박배준;이병우
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.161-170
    • /
    • 1998
  • A general formulation of the long cylinder tolerance design for the joint structure is here presented. The aim of this paper is to calculate the tolerance of joint by defining tolerance as a kind of uncertainty and to obtain the robustness of the joint structure. It is formulated on the bases of the minimum sensitivity theorem. The objective function is the tolerance sensitivity for the Von-Mises stress. It also took into full account the stress, displacement and weight constraints. PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve the constrained nonlinear optimization problem. The finite element analysis is performed with CST(Constant-Strain-Triangle) axisymmetric element. Sensitivities for design variables are calculated by the direct differentiation method. The numerical result is presented for the cylindrical structure where the joint tolerance is treated as random variables.

  • PDF

Design Sensitivity Analysis and Optimal Design to Control Forced Harmonic Vibration of Structure (구조물 진동제어를 위한 설계 민감도해석 및 최적설계)

  • J.H. Lee;K.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.64-72
    • /
    • 1995
  • Sizing design sensitivity analysis of structures subjected to the harmonic vibration is performed using adjoint variable method. Constraint is the stress and sizing design variables are thickness, bending moment of inertia, and cross-sectional area of structures. Accurate sensitivities are computed and plotted sensitivity can be used as a design guidance tool. The accuracy of sensitivities is verified by the finite difference values. Also, optimal design of three-bar structure is performed using the computed sensitivity and feasible direction method while satisfying constraints and obtaining the minimum weight.

  • PDF

A Study on the Weight Reduction of X,Y stage of Semiconductor Inspection Equipment using Sensitivity Analysis (민감도 분석을 이용한 반도체 검사 장비의 X, Y 스테이지 구조의 경량화 연구)

  • Koh, Man Soo;Kwon, Soon Ki;Kim, Cham Nae
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.125-130
    • /
    • 2019
  • Sensitivity analysis is used to determine the effect of a change in a design parameter on the total system, and the calculated sensitivity is an important indicator of the improvement of a structure. In this study, we investigated the method of deriving and analyzing the sensitivity of design parameters by using finite element analysis and the method of improving a structure by using sensitivity analysis results. Design parameters for weight reduction design were selected using actual semiconductor inspection equipment that requires structural improvement, and the sensitivity to design parameters was calculated by using and finite difference method. We propose an improvement method that can reduce the weight while maintaining the transient response required by the equipment. By using the results of the sensitivity analysis through finite element analysis and finite difference method, we can create a structurally improved design that satisfies the desired stress or displacement by improving the design of the structure. Therefore, sensitivity analysis is applicable to various fields as well as semiconductor inspection equipment.

Formulations of Sensitivity Analyses for Topological Optimum Modelings (위상학적 최적구조 모델링을 위한 민감도해석의 공식화)

  • Lee, Dong-Kyu;Shin, Soo-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.241-248
    • /
    • 2008
  • The objective of sensitivity analyses is to identify critical variables of structural models and how their variability impacts mechanical response results. The sensitivity analyses have been used as significant basis data for practical applications of measuring and reinforcing fragile building structures. This study presents several sensitivity analysis methods for topological optimum designs of linear elastostatic structural systems. Numerical examples for structural analyses and topological optimum modeling demonstrate the reliability of sensitivities formulated in the present study.

A Study on Shape Optimum Design for Stability of Elastic Structures (탄성 구조물의 안정성을 고려한 형상최적설계)

  • Yang, Wook-Jin;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • This paper addresses a method for shape optimization of a continuous elastic body considering stability, i.e., buckling behavior. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Unlike the conventional finite difference method (FDM), this method is efficient in that only a couple of analyses are required regardless of the number of design parameters. Commercial software such as ANSYS can be employed since the method requires only the result of the analysis in computation of the sensitivity. Though the buckling problem is more efficiently solved by structural elements such as a beam and shell, elastic solids have been chosen for the buckling analysis because solid elements can generally be used for any kind of structure whether it is thick or thin. Sensitivity is then computed by using the mathematical package MATLAB with the initial stress and buckling analysis of ANSYS. Several problems we chosen in order to illustrate the efficiency of the presented method. They are applied to the shape optimization problems to minimize weight under allowed critical loads and to maximize critical loads under same volume.

Expansion of Sensitivity Analysis for Statistical Moments and Probability Constraints to Non-Normal Variables (비정규 분포에 대한 통계적 모멘트와 확률 제한조건의 민감도 해석)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1691-1696
    • /
    • 2010
  • The efforts of reflecting the system's uncertainties in design step have been made and robust optimization or reliabilitybased design optimization are examples of the most famous methodologies. The statistical moments of a performance function and the constraints corresponding to probability conditions are involved in the formulation of these methodologies. Therefore, it is essential to effectively and accurately calculate them. The sensitivities of these methodologies have to be determined when nonlinear programming is utilized during the optimization process. The sensitivity of statistical moments and probability constraints is expressed in the integral form and limited to the normal random variable; we aim to expand the sensitivity formulation to nonnormal variables. Additional functional calculation will not be required when statistical moments and failure or satisfaction probabilities are already obtained at a design point. On the other hand, the accuracy of the sensitivity results could be worse than that of the moments because the target function is expressed as a product of the performance function and the explicit functions derived from probability density functions.