• Title, Summary, Keyword: 스피닝

Search Result 57, Processing Time 0.058 seconds

Study of Hot Spinning Process for Head of CNG Storage Vessel (CNG 저장용기의 두부 성형을 위한 열간스피닝 공정에 관한 연구)

  • Lee, Hyun Woo;Jung, Sung Yuen;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.547-554
    • /
    • 2013
  • The fuel storage vessel installed in CNG vehicles can be largely divided into 3 parts: head, cylinder, and dome. Studies of the cylinder and dome parts have already been performed, but sufficient design data is not available about the head part. Therefore, expert field engineers heavily depend upon trial-and-error methods. Therefore, FE analysis is performed to review the hot spinning process for forming the head part of the CNG vessel using the Arbitrary Lagrangian-Eulerian (ALE) method. The effects of forming factors on the load were analyzed. The values of the factors were chosen to avoid defects in the head part and buckling, and the forming feasibility of the head part was investigated. Furthermore, a bursting test was performed to evaluate the safety of the storage vessel.

Springback Reduction of Multi-step Cylindrical Cup in Spinning Process. (스피닝공정에 있어서 스프링백 억제방안)

  • Park, Joong-Eon;Lee, Woo-Young;Choi, Seogou;Kim, Seung-Soo;Na, Kyoung-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.186-191
    • /
    • 2001
  • Spinning process is a chipless metal forming method for axi-symmetric parts, which is more economical, efficient and versatile method for producing parts than the other sheet metal forming process such as stamping or deep drawing. In this study, a fundamental experiment was conducted to improve productivity with process parameters such as tool path, angle of roller holder($\alpha$), feed rate($\gamma$) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to hale an effect on spring back. The empirical results were analyzed to know how much spring back was affected by these factors. And also thickness and diameter distribution of a multistage cup obtained by spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Design of Hydraulic & Control System for the Disc Spinning Machine (디스크 스피닝 성형기의 유압 및 제어시스템 설계)

  • Gang, Jung-Sik;Park, Geun-Seok;Gang, E-Sok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.157-165
    • /
    • 2002
  • The design of hydraulic & control system has been developed for the disc spinning machine. The hydraulic system has been designed in the overall system including the vertical & horizontal slide fur spinning works which are controlled by hydraulic servo valves in right & left side, and the clamping slide for holding & pressing blank material in center during spinning process. Based on the design concept of this hydraulic system, model test experiments for hydraulic servo control system is tested to conform confidence and applying possibility. The control system is introduced with the fuzzy-sliding mode controller for the hydraulic force control reacting force as a disturbance, because a fuzzy controller does not require an accurate mathematical model for the generation of nonlinear factors in the actual nonlinear plant with unknown disturbances and a sliding controller has the robustness & stability in mathematical control algorithm. We conform that the fuzzy-sliding mode controller has a good performance in force control for the plant with a strong disturbance. Also, we observe that a steady state error of the fuzzy-sliding mode controller can be reduced better than those of an another controllers.

Design of roller path for spinning of cylindrical cups of aluminum sheet metal (알루미늄 원통컵 스피닝 작업을 위한 롤러이송경로 설계)

  • Kim, Jong-Ho;Park, Gyu-Ho
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.489-495
    • /
    • 1998
  • Spinning is a chipless forming method for producing axially symmetric parts by using axial-radial motions of a spinning roller. This process has still some advantages in such a view point that a variety of complex shapes which can not be formed in a press can be easily spun at a low cost although it is one of the oldest forming methods for spinning mainly cookware parts for a long time. This study is to investigate the optimum roller path in order to obtain the maximum spinnability in producing cylindrical cups of Aluminum(A1050-H16) sheet metal. Working conditions applicable to any size of blank were predetermined through preliminary spinning tests. 9 types of roller path were proposed and experiments were carried out. The modified involute curve was shown to give the maximum drawing ration and more uniform quality of spun cups as compared with other results of this study. in addition thickness distribution and dimensional accuracy of spun cups were examined and discussed.

  • PDF

A Study on the Thermal Characteristics of Spindle for the Spinning Machine (스피닝 머신용 대형주축의 열특성에 관한 연구)

  • Jeong D.S.;Kim S.T.;Choi D.B.;Ye S.B.;Seol S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.555-559
    • /
    • 2005
  • Spinning process is a chipless metal forming method for axis-symmetric parts, which is more economical, efficient and versatile method for producing parts than other sheet metal forming process such as stamping or deep drawing. The large-sized spindle for spinning machine is the equipment to ferm a high-pressure vessel into the demanded shape. The important problem in the spindle system fur spinning machines is to reduce and minimize the thermal effect by motor and bearings. In this study, the effect of heat generation of bearings for the large-sized spindle is considered. Temperature distribution and thermal displacement of the spindle system for spinning machine can be analyzed by using the finite element method. The numerical results are compared with the measured data. The results show that temperature distribution and thermal displacement can be reasonably estimated by using the finite element method and the three dimensional model.

  • PDF

The Effects of Forming Depth and Feed Rate on Forming Force of Backward Flow Forming (후방유동성형에서 가공깊이와 이송속도가 성형력에 미치는 영향)

  • Nam Kyoung-O;Yeom Sung-Ho;Kwon Hyuk-Sun;Hong Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.16-22
    • /
    • 2005
  • The flow forming has been used to produce long thin walled tube parts, with reduced forming force and enhanced mechanical and surface quality for a good finished part, compared with other method formed parts. So flow forming technique is used widely in industrial production. Especially spinning and flow forming techniques are used frequently in automotive, aerial, defense industry. In this paper, finite element method analysis of three-roller backward flow forming of a workpiece is carried out to study effects of forming depth and feed rate on forming force. The axial and radial forces on several forming depth and feed rate conditions are obtained.

Development of Manufacturing Process for Long-Neck Flange by Spinning (스피닝을 이용한 롱넥플랜지의 성형공정 개발)

  • Gwak, Gi Yeol;Cho, Jong Rae;Choi, Jin Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.929-935
    • /
    • 2015
  • The long neck flange is used to connect piping arrangements where the lap joint is applied. Generally, the component can be manufactured by welding, but this method is both time and cost intensive. Embrittlement at the heat affected zones was also considered. A spinning method developed to improve the manufacturing process and solve the problems of welding. The flange area of the long neck flange can be formed by changing the direction of the metal flow, from axial to radial, while maintaining pressure by using an outer mold and a lap roller. A modified process was additionally developed using a round roller rather than the outer mold. In this modification, the round roller can form the shape of all sizes of long neck flange. Using these flexible methodologies, the cost to prepare outer molds and the time to install and remove the molds can be significantly reduced.

A study on the development of CNC spinning technology without mandrel (만드렐이 없는 CNC Spinning 기술개발에 관한 연구)

  • 이춘만;허태목
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.620-623
    • /
    • 2002
  • Spinning has been used widely for the manufacture of hollow parts with rotational symmetry. With developing CNC machine, CNC machine center can be applied to the spinning processes. In this paper, a study on the development of CNC spinning technology without mandrel is carried out. The deforming process of the spinning process was simulated by DEFORM 3D to give basic design data.

  • PDF