• Title, Summary, Keyword: 실리콘

Search Result 4,913, Processing Time 0.057 seconds

폐슬러지 실리콘을 이용한 마이크론 크기의 이산화 실리콘 구형입자 제조

  • 한길진;김영철;장영철;김나랑;주지선
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • /
    • pp.213-216
    • /
    • 2004
  • 폐슬러지 실리콘과 흑연의 혼합물에 물을 주입하고 열처리하여, 마이크론 크기의 이산화 실리콘 구형입자를 제조하였다. 제조된 이산화 실리콘의 직경은 균일하고 약 $1.7\mu\textrm{m}$이다. 탄화 실리콘이 이산화 실리콘 구형입자와 함께 존재하였으며, 그 모양은 휘스커와 다면체였다. 폐슬러지 실리콘과 탄소의 혼합물을 고온에서 열처리하면 일산화 실리콘 기체가 생성된다. 물이 산소의 공급원으로 주입되면 일산화 실리콘 기체는 산소와 반응하여 이산화 실리콘 고체가 형성될 수 있다. 실리콘 공급원으로 일산화 실리콘이 반응기 내에 균일하게 분포하고 물을 주입하여 이산화 실리콘이 형성되는 메커니즘은 액상에서 수산화 실리콘 구형입자를 형성하는 메커니즘과 유사하다.

  • PDF

적층형 박막 실리콘 태양전지 효율의 한계 및 돌파구

  • Myeong, Seung-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.27-27
    • /
    • 2010
  • 최근에 고유가와 지구온난화로 인하여 에너지가 향후 인류의 50년을 좌우할 가장 큰 문제로 대두되고 있어서 지구의 모든 에너지의 근원인 태양광을 이용하는 태양광 발전은 무한한 청정 에너지로 각광받고 있다. 빛을 흡수하여 전기에너지로 변환하는 태양전지는 풍력, 수소연료전지, 조력, 바이오에탄올 등의 신재생에너지 기술 중에서 상품성은 가장 뛰어나지만 발전단가가 가장 높은 것이 단점이다. 태양광 발전단가를 줄여서 기존의 화석에너지를 이용한 발전단가와 견줄 수 있는 그리드 패러티(grid parity)를 달성하려면 태양전지 모듈의 고효율화와 동시에 저가화가 반드시 이루어져야 한다. 현재 태양광 모듈 시장의 90%는 효율이 12-16% 정도로 높은 단결정(single crystalline or monocrystalline) 실리콘이나 다결정(polycrystalline or multicrystalline) 실리콘 등의 벌크(bulk)형 결정질 실리콘 모듈이 차지하고 있으나 원재료인 실리콘 웨이퍼의 제조단가의 50%를 차지하고 있어서 저가화가 어렵다. 반면, 원료가스를 분해하여 대면적 기판에 증착하는 박막(thin-film) 실리콘 태양전지의 경우는 차세대 태양전지로 각광받고 있다. 박막 실리콘 모듈은 매우 적은 실리콘 원재료를 소비한다. 단결정이나 다결정 실리콘 웨이퍼의 두께가 $180-250\;{\mu}m$ 정도인 것에 비해서 박막 실리콘의 두께는 $0.3-3\;{\mu}m$ 수준이다. 더불어, 유리, 플라스틱 등의 저가 기판에 저온 대면적 증착이 가능하여 저가양산화에 유리하다. 박막 실리콘 모듈은 벌크형 실리콘 모듈(-0.5%/K) 대비 낮은 온도계수[비정질 실리콘(amorphous silicon; a-Si:H)의 경우 -0.2%/K]와 빛의 세기가 약한 산란광에서도 동작하여 평균발전시간이 증가하므로 외부환경에서 우수한 발전성능을 보이고 있다. 태양전지 모듈은 상온에서의 안정화 효율을 기준으로 가격이 책정되어($/$W_p$) 판매되기 때문에 벌크형 실리콘 모듈에 비해서 박막 실리콘 모듈은 가격대 성능비가 우수하다. 따라서 박막 실리콘 모듈은 벌크형 결정 실리콘 모듈의 대안으로 떠오르고 있으며, 레이저 기술을 이용하여 수려한 투광형 건물일체형(building integrated photovoltaic; BIPV) 모듈을 제작할 수 있는 장점도 있다. 이러한 장점에도 불구하고 기존의 양산화된 단일접합 비정질 실리콘 태양광 모듈은 효율이 6-7%로 낮아서 설치면적 및 설치 모듈의 증가가 성장의 걸림돌이 되고 있다. 박막 실리콘 태양전지의 고효율화를 도모하기 위해서 적층형 탄뎀셀로 양산 트렌드가 변화하고 있다. 이에 적층형 박막 실리콘 태양전지 효율의 한계 및 돌파구에 대해서 논의한다.

  • PDF

Epoxy Resin을 이용한 초박형 실리콘 박리 공정에 대한 연구

  • Lee, Jun-Hui;Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.334.1-334.1
    • /
    • 2016
  • 다른 재료에 비해 에너지 변환 효율의 관점에서 높은 경쟁력을 가진 결정질 실리콘은 지난 수십 년 동안 그 특성이 태양전지 분야에 널리 이용되어 왔다. 하지만 결정질 실리콘 웨이퍼는 일반적으로 제조 단계에서 많은 양의 에너지를 소비하고 절단 단계에서 절단 손실(Kerf-loss)이 발생된다. Epoxy Resin을 이용한 Kerf-less Wafering은 초박형 실리콘 웨이퍼 제조 기술 중 하나로, 비교적 간단한 장비와 공정을 통하여 절단 손실 없이 $50{\mu}m$이하의 초박형 실리콘 웨이퍼를 얻을 수 있는 기술이다. 실리콘과 Epoxy Resin 간의 열팽창 계수 차이를 이용하여 초박형 실리콘을 박리 시키는 기술로, 실리콘 기판 위에 Epoxy Resin으로 stress inducing layer를 올려 공정을 진행한다. stress inducing layer를 경화시키는 열처리가 끝나고 급냉되는 과정에서 stress inducing layer에 의해 실리콘 기판에 큰 응력이 가해지게 되고 실리콘 기판에 crack이 발생된다. 공정이 계속 됨에 따라 발생된 crack은 실리콘 표면과 평행한 방향으로 전파 되고 초박형 실리콘 layer가 실리콘 기판에서 박리 된다. 본 실험에서 중요한 공정 변수로는 stress inducing layer의 구성성분 및 두께, 열처리 온도 및 시간, cooling rate 등이 있다. 이러한 공정 변수들을 조절 하여 Epoxy Resin을 이용하여 $100{\mu}m$ 이하의 박리된 wafer를 얻을 수 있었다. 박리된 wafer의 단면과 두께를 Scanning Electron Microscopy(SEM)을 통해 관찰 하였고, 이를 통해 초박형 실리콘 박리 공정에 대한 연구를 진행하였다.

  • PDF

Poly Si Buffer-layer 도입에 의한 실리콘 양자점층 두께 증가에 따른 실리콘 양자점 태양전지 효율 향상

  • Baek, Hyeon-Jeong;Park, Jae-Hui;Kim, Tae-Un;Kim, Gyeong-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.354-354
    • /
    • 2012
  • 실리콘 양자점 태양전지는 실리콘이 nm 크기의 양자점으로 될 경우 밴드갭이 증가하여 태양광 중의 가시광선을 광전변환에 활용함으로써 효율을 향상시키는 차세대 태양전지이다. 그러나 실리콘 양자점이 SiO2 매질 내에 분포하므로 양자점층의 두께가 증가할 경우 박막의 직렬저항이 증가하여 일정 두께 이상이 되면 효율이 감소하는 결과를 가져온다. 본 연구에서는 두께증가에 따른 효율저하 문제를 해결하기 위해 다결정 실리콘으로 이루어진 완충층을 도입 하였다. 이를 위해 본 연구에서는 두 가지 형태의 실리콘 양자점 태양전지를 제작하여 광전변환 특성을 비교하였다. 첫 번재 구조는 B이 도핑된 단일 실리콘 양자점층 태양전지이다. 양자점층은 2 nm SiOx 층과 2 nm SiO2 층을 적층한 후 $1,100^{\circ}C$에서 20분간 질소 분위기에서 급속 열처리하여 제작하였다. 실리콘 양자점 층의 두께를 40 nm에서 200 nm까지 변화시키면서 효율을 측정한 결과 100 nm 정도에서 효율이 감소하기 시작하였다. 이러한 효율감소는 양자점층의 저항 증가에 따른 전류감소에 의함이 확인되었다. 이와는 대조적으로 실리콘 양자점 층의 저항을 줄이기 위해 실리콘 양자점층 내에 50 nm 간격으로 10 nm 두께의 B이 도핑된 다결정 실리콘층을 배치하는 실리콘 양자점 태양전지를 개발하였다. 이러한 실리콘 양자점 층의 두께를 증가시킬 경우 효율이 지속적으로 증가함을 관찰하였다. 이러한 두 가지 형태의 양자점층을 이차이온질량분석법으로 분석한 결과 단일 실리콘 양자점층의 경우 두께가 약 70 nm 정도부터 이온빔 스퍼터링에 의한 저항증가에 따른 대전현상 (charging)이 관찰되었으나 다결정 실리콘 층이 배치된 실리콘 양자점층에서는 전혀 대전현상이 발생하지 않았다. 이는 다결정 실리콘 층이 캐리어를 이동시키는 매개체 역할을 하는 것으로 해석될 수 있다.

  • PDF

A study of a-Si:H/c-Si interface properties by surface morphology of Si wafer in heterojunction solar cells (실리콘 기판의 표면 형상에 따른 실리콘 이종접합 태양전지의 a-Si:H/c-Si 계면 특성 연구)

  • Kang, Byung-Jun;Tark, Sung-Ju;Kang, Min-Gu;Kim, Chan-Seok;Lee, Jeong-Chul;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.92-92
    • /
    • 2009
  • 실리콘 기판과 비정질 실리콘 박막 사이의 계면특성은 실리콘 이종접합 태양전지의 효율을 높이는데 있어서 중요한 요소이다. 이종접합 태양전지에서는 n형 실리콘 기판 위에 비정질 실리콘 막을 증착시키는데 이 때 비정질 실리콘 막이 증착되면서 (111)면과 (111)면이 만나는 조직화된 피라미드의 골 사이에서 부분적으로 실리콘의 에피층이 성장하게 된다. 이 에피층이 결정질 실리콘 기판과 비정질 실리콘 막 사이의 계면 특성을 떨어뜨려 이종접합 태양전지의 효율이 감소하게 된다. 본 연구에서는 n형 실리콘 기판을 이용한 고효율 실리콘 이종접합 태양전지 제작을 위하여 실리콘 기판의 조직화 상태를 다르게 하여 셀을 제작하였다. 이에 큰 피라미드 형상의 조직화된 기판 표면, 작은 피라미드 형상의 조직화된 기판 표면, 큰 피라미드 형상을 라운딩 시킨 기판 표면, 작은 피라미드 형상을 라운딩 시킨 기판 표면을 제작하여 기판 종류에 따른 이종접합 태양전지를 제작하여 특성을 비교 하였다.

  • PDF

Induction Melting Process using Graphite Crucible for Metallurgical Grade Silicon (Graphite Crucible을 이용한 실리콘 유도 용융 공정)

  • Park, Sung-Soon;Jang, Bo-Yun;Kim, Joon-Soo;Ahn, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.223-223
    • /
    • 2010
  • 태양 전지에 사용되는 실리콘의 전자기 유도 용융 기술은 잉곳(ingot)의 성장 및 금속 정련 등의 핵심 공정인 실리콘 용융에서 사용되는 중요한 기술이다. 하지만, 유도 용융에 사용되는 흑연 도가니에 의한 실리콘의 오염은 실리콘의 순도저하에 요인으로 작용한다. 흑연 도가니와 용융된 실리콘이 접하는 계면에서 탄소의 오염이 발생하게 되며, 실리콘 내부에 흡수한 탄소는 대표적인 비금속 불순물로 태양전지 효율을 감소시킨다. 본 연구에서 사용되는 흑연 도가니는 유도 코일의 전자기력에 의해 실리콘과 무접촉 또는 연접촉이 가능한 구조이다. 또한, 유도 자기장을 이용하여 실리콘과 같은 반도체를 용융할 경우, 고상에서의 낮은 전기전도도로 인해 효과적인 줄-발열(Joule Heating)이 불가능하므로 플라즈마와 같은 보조 열원을 필요로 한다. 본 연구에서는, 보조 열원 없이 세그먼트(segment)된 흑연 도가니를 이용한 실리콘 용융 연구를 진행하였다.

  • PDF

Silicon Photonics Technology-The optical I/O platform for future computing and data communication (실리콘 포토닉스 테크놀로지-미래컴퓨팅, 데이터 통신을 위한 광I/O 플랫폼)

  • Kim, G.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.6
    • /
    • pp.13-20
    • /
    • 2016
  • 실리콘 포토닉스 기술은 컴퓨터를 비롯한 여러 전자, 통신 기기들이 광 정보를 송수신하는 데 표준 실리콘을 이용하는 기술로, 기존 실리콘 반도체 기술과 호환될 수 있는 기술이다. 전자와 광의 융합기술로 실리콘 칩 사이, 또는 칩 내에서 빛으로 데이터를 주고받아, 데이터 전송속도를 획기적으로 올리면서도 전력 소모량을 크게 줄일 수 있는 것이 가능하다. 고성능, 저 생산비용과 낮은 소비전력 등의 장점 때문에, 전 세계적으로 실리콘 포토닉스 핵심기술/실용적 플랫폼 연구개발 및 상용화 경쟁이 이루어지고 있다. 본지에서는 실리콘 포토닉스 기술의 간략한 개요, 현재 동향 및 기술 이슈, 그리고 ETRI에서 연구개발된 실리콘 포토닉스 기술과 더불어 그 발전 전망에 대해 기술한다.

  • PDF

Effects of Electron-beam. Patterns on Microstructures of Silicon for Photovoltaic Applications (전자빔패턴에 따른 태양전지용 실리콘의 미세구조)

  • Choi, Sun-Ho;Jang, Bo-Yun;Kim, Joon-Soo;Ahn, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.224-224
    • /
    • 2010
  • 야금학적 정련은 태양전지 소재인 실리콘의 저가화를 통한 태양전지의 단가를 낮추는데 유망한 공정이다. 이중에서도 실리콘의 전자빔정련은 고순도의 실리콘 정련에 효과적인 기술이다. 본 연구에서는 전자빔용융법을 이용하여 실리콘 정련을 수행하였으며, 제조된 실리콘의 미세구조 및 분순물농도를 측정하였다. 고진공의 챔버 하부에 수냉동도가니가 위치해있고, 상부에 100 kW출력의 전자총이 설치되었다. 실리콘은 분쇄 및 세척과 같은 전처리 없이 수냉동도가니에 250g 이 장입되었다. 전자빔때턴은 소프트웨어를 통한 헌혈, 나선형의 경로(path)와 원형의 형상(Shape)이 결합하여 원형패턴과 나선형패턴의 형상으로 실리콘에 조사되었다. 전자빔의 출력을 15 kW로 실리콘을 용융하였고 분당 0.5 kW의 속도로 서냉하였다. 제조된 실리콘은 지름 100 mm, 높이 25 mm의 버튼형상이었으며, 횡방향으로 절단하여 미세구조와 불순물거동을 분석하였다. 미세구조는 광학현미경 (OM) 과 전자현미경 (SEM)을 통하여 관찰하였고 불순물거동은 유도결합플라즈마 분광분석기(ICP-AES) 을 통하여 분석하였다. 장입된 실리콘의 초기순도는 99.5 %이고, 전자빔정련 공정 후 99.996 %까지 향상되었다. 전자빔패턴을 이용한 고순도 실리콘의 정련은 태양전지 소재 개발에 유망한 기술로 활용될 것이다.

  • PDF

Properties of ultra-thin silicon oxynitride films using plasma-assisted oxynitridation method (플라즈마 처리 기법을 이용한 초박형 실리콘 옥시나이트라이드 박막의 특성)

  • Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.260-260
    • /
    • 2009
  • 초박형 절연막은 현재 다양한 전자소자의 제작과 향상을 위하여 활용되고 있으며, 일반적인 화학 기상 증착 방법으로는 균일도를 확보하기 어려운 문제점을 가지고 있다. 본 논문에서는 디스플레이의 구동소자로 활용되는 박막 트랜지스터의 특성 향상과 비휘발성 메모리 소자의 터널링 박막에 응용하기 위하여 초박형 실리콘 옥시나이트라이드 박막의 증착과 이의 특성을 분석하였다. 실리콘 옥시나이트라이드 박막은 실리콘 산화막에 질소가 주입되어 있는 형태로 실리콘 산화막과 실리콘 계면상에 존재하는 질소는 터널링 전류와 결함 형성을 감소시키며, bulk 내에 존재하는 질소는 단일 실리콘 산화막에 비해 더 두꺼운 박막을 커패시턴스의 감소없이 이용할 수 있는 장점이 있다. 플라즈마 처리 기법을 이용하였을 경우에는 초박형의 균일한 박막을 얻을 수 있으며, 본 연구에서는 이산화질소 플라즈마를 이용하여 활성화된 질소 및 산소 라디칼들이 실리콘 계면을 개질하여 초박형 실리콘 옥시나이트라이드 박막을 형성활 수 있다. 플라즈마 처리 시간과 RF power의 변화에 따라 형성된 실리콘 옥시나이트라이드 박막의 두께 및 광학적 특성은 엘립소미터를 통하여 분석하였으며, 전기적인 특성은 금속-절연막-실리콘의 MIS 구조를 형성하여 커패시턴스-전압 곡선과 전류-전압 곡선을 사용하여 평가하였다. 이산화질소 플라즈마 처리 방법을 사용한 실리콘 옥시나이트라이드 박막을 log-log 스케일로 시간과 박막 두께의 함수로 전환해보면 선형적인 증가를 나타내며, 이는 초기적으로 증착률이 높고 시간이 지남에 따라 두께 증가가 포화상태에 도달함을 확인할 수 있다. 실리콘 옥시나이트라이드 박막은 초기적으로 산소의 함유량이 많은 형태의 박막으로 구성되며, 시간의 증가에 따라서 질소의 함유량이 증가하여 굴절률이 높고 더욱 치밀한 형태의 박막이 형성되었으며, 이는 시간의 증가에 따라 플라즈마 챔버 내에 존재하는 활성종들은 실리콘 박막의 개질을 통한 실리콘 옥시나이트라이드 박막의 두께 증가에 기여하기 보다는 형성된 박막의 내부적인 성분 변화에 기여하게 된다. 이산화질소 플라즈마 처리 시간의 변화에 따라 형성된 박막의 정기적인 특성의 경우, 2.3 nm 이상의 실리콘 옥시나이트라이드 박막을 가진 MIS 구조에서 accumulation과 inversion의 특성이 명확하게 나타남을 확인할 수 있다. 아산화질소 플라즈마 처리 시간이 짧은 실리콘 옥시나이트라이드 박막의 경우 전압의 변화에 따라 공핍영역에서의 기울기가 현저히 감소하며 이는 플라즈마에 의한 계면 손상으로 계면결합 전하량이 증가에 기인한 것으로 판단된다. 또한, 전류-전압 곡선을 활용하여 측정한 터널링 메카니즘은 2.3 nm 이하의 두께를 가진 실리콘 옥시나이트라이드 박막은 직접 터널링이 주도하며, 2.7 nm 이상의 두께를 가진 실리콘 옥시나이트라이드 박막은 F-N 터널링이 주도하고 있음을 확인할 수 있다. 즉, 2.5 nm 두께를 경계로 하여 실리콘 옥시나이트라이드 박막의 터널링 메카니즘이 변화함을 확인할 수 있다. 결론적으로 2.3 nm 이상의 두께를 가진 실리콘 옥시나이트라이드 박막에서 전기적인 안정성을 확보할수 있어 박막트랜지스터의 절연막으로 활용이 가능하며 2.5 nm 두께를 경계로 터널링 메커니즘이 변화하는 특성을 이용하여 비휘발성 메모리 소자 제작시 전하 주입 및 기억 유지 특성을 확보를 위한 실리콘 옥시나이트라이드 터널링 박막을 효과적으로 선택하여 활용할 수 있다.

  • PDF

아산화질소 플라즈마 처리를 이용하여 형성한 실리콘 옥시나이트라이드 박막의 특성과 어플리케이션

  • Jeong, Seong-Uk;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.142-142
    • /
    • 2010
  • 본 논문은 단결정 및 다결정 실리콘 기판 상에 아산화질소 플라즈마 처리를 통하여 형성한 초박형 실리콘 옥시나이트라이드 박막의 특성과 이의 어플리케이션에 관한 것이다. 초박형 절연막은 현재 다양한 전자소자의 제작과 특성 향상을 위하여 활용되고 있으나 일반적인 화학 기상 증착 방법으로는 균일도를 확보하기 어려운 문제점을 가지고 있다. 디스플레이의 구동소자로 활용되는 박막 트랜지스터의 특성 향상과 비휘발성 메모리 소자의 터널링 박막에 응용하기 위하여 초박형 실리콘 옥시나이트라이드 박막의 증착과 이의 특성을 분석하였고, 실제 어플리케이션에 적용하였다. 실리콘 산화막과 실리콘 계면상에 존재하는 질소는 터널링 전류와 결함 형성을 감소시키며, 벌크 내에 존재하는 질소는 단일 실리콘 산화막에 비해 더 두꺼운 박막을 커패시턴스의 감소없이 이용할 수 있는 장점이 있다. 아산화질소 플라즈마를 이용하여 활성화된 질소 및 산소 라디칼들이 실리콘 계면을 개질하여 초박형 실리콘 옥시나이트라이드 박막을 형성할 수 있다. 플라즈마 처리 시간과 RF power의 변화에 따라 형성된 실리콘 옥시나이트라이드 박막의 두께 및 광학적, 전기적 특성을 분석하였다. 아산화질소 플라즈마 처리 방법을 사용한 실리콘 옥시나이트라이드 박막을 시간과 박막 두께의 함수로 전환해보면 초기적으로 증착률이 높고 시간이 지남에 따라 두께 증가가 포화상태에 도달함을 확인할 수 있다. 아산화질소 플라즈마 처리 시간의 변화에 따라 형성된 박막의 전기적인 특성의 경우, 플라즈마 처리 시간이 짧은 실리콘 옥시나이트라이드 박막의 경우 전압의 변화에 따라 공핍영역에서의 기울기가 현저히 감소하며 이는 플라즈마에 의한 계면 손상으로 계면결합 전하량이 증가에 기인한 것으로 판단된다. 또한, 전류-전압 곡선을 활용하여 측정한 터널링 메카니즘은 2.3 nm 이하의 두께를 가진 실리콘 옥시나이트라이드 박막은 직접 터널링이 주도하며, 2.7 nm 이상의 두께를 가진 실리콘 옥시나이트라이드 박막은 F-N 터널링이 주도하고 있음을 확인할 수 있다. 결론적으로 실리콘 옥시나이트라이드 박막을 활용하여 전기적으로 안정한 박막트랜지스터를 제작할 수 있었으며, 2.5 nm 두께를 경계로 터널링 메커니즘이 변화하는 특성을 이용하여 전하 주입 및 기억 유지 특성이 효과적인 터널링 박막을 증착하였고, 이를 바탕으로 다결정 실리콘 비휘발성 메모리 소자를 제작하였다.

  • PDF