The internal pressure is a critical parameter for designing a pressure vessel. The static pressure that a pressure vessel must withstand is usually determined according to the various codes and standards with simple formula or numerical simulations considering the geometric parameters such as diameter and thickness of a vessel. However, there is no specific codes or technical standards we can use practically for designing of pressure vessels which have to endure the detonation pressure. Detonation pressure is a kind of dynamic pressure which causes an impulsive pressure on the vessel wall in a extremely short time duration. In addition, it is known that the magnitude of reflected pressure at the vessel wall due to the explosion can be over twice the incident pressure. Therefore, if we only consider the reflected pressure, the design of the pressure vessel can be too conservative from the economical point of view. In this study, we suggest a practical method to evaluate the magnitude of maximum allowable pressure that the pressure vessel can withstand against the detonation inside a vessel. As an example to validate the proposed method, we consider the pressure vessel containing hydrogen gas.