• Title, Summary, Keyword: 얼굴 표정

Search Result 459, Processing Time 0.042 seconds

3D Facial Model Expression Creation with Head Motion (얼굴 움직임이 결합된 3차원 얼굴 모델의 표정 생성)

  • Kwon, Oh-Ryun;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • /
    • pp.1012-1018
    • /
    • 2007
  • 본 논문에서는 비전 기반 3차원 얼굴 모델의 자동 표정 생성 시스템을 제안한다. 기존의 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 배제한 얼굴 표정 생성에 초점을 맞추고 있으며 얼굴 모션 추정과 표정 제어에 관한 연구는 독립적으로 이루어지고 있다. 제안하는 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출 방법으로는 얼굴 후보 영역 검출과 얼굴 영역 검출 과정으로 구성된다. HT 컬러 모델을 이용하며 얼굴의 후보 영역을 검출하며 얼굴 후보 영역으로부터 PCA 변환과 템플릿 매칭을 통해 얼굴 영역을 검출하게 된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 3차원 실린더 모델의 투영과 LK 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 또한 영상 보정을 통해 강인한 모션 추정을 할 수 있다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용하며 12개의 얼굴 특징점으로부터 얼굴 모델의 표정을 생성한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 눈썹, 눈, 입 주위의 얼굴 특징점을 검출하며 LK 알고리즘을 이용하여 특징점을 추적(Tracking)한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수를 획득한다. 애니메이션 매개변수로부터 얼굴 모델의 제어점을 이동시키며 주위의 정점들은 RBF 보간법을 통해 변형한다. 변형된 얼굴 모델로부터 얼굴 표정을 생성하며 모션 추정 결과를 모델에 적용함으로써 얼굴 모션 정보가 결합된 3차원 얼굴 모델의 표정을 생성한다.

  • PDF

SVM Based Facial Expression Recognition for Expression Control of an Avatar in Real Time (실시간 아바타 표정 제어를 위한 SVM 기반 실시간 얼굴표정 인식)

  • Shin, Ki-Han;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • /
    • pp.1057-1062
    • /
    • 2007
  • 얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.

  • PDF

Realistic 3D Facial Expression Animation Based on Muscle Model (근육 모델 기반의 자연스러운 3차원 얼굴 표정 애니메이션)

  • Lee, Hye-Jin;Chung, Hyun-Sook;Lee, Yill-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.265-268
    • /
    • 2002
  • 얼굴은 성별, 나이, 인종에 따라 다양한 특징을 가지고 있어서 개개인을 구별하기가 쉽고 내적인 상태를 쉽게 볼 수 있는 중요한 도구로 여겨지고 있다. 본 논문은 얼굴표정 애니메이션을 위한 효과적인 방법으로 실제얼굴의 피부조직 얼굴 근육 등 해부학적 구조에 기반한 근육기반모델링을 이용하는 방법을 소개하고자 한다. 제안하는 시스템의 구성은 얼굴 와이어프레임 구성과 폴리곤 메쉬분할 단계, 얼굴에 필요한 근육을 적용시키는 단계, 근육의 움직임에 따른 얼굴 표정생성단계로 이루어진다. 와이어프레임 구성과 폴리곤 메쉬 분할 단계에서는 얼굴모델을 Water[1]가 제안한 얼굴을 기반으로 하였고, 하나의 폴리곤 메쉬를 4등분으로 분할하여 부드러운 3D 얼굴모델을 보여준다. 다음 단계는 얼굴 표정생성에 필요한 근육을 30 개로 만들어 실제로 표정을 지을 때 많이 쓰는 부위에 적용시킨다. 그 다음으로 표정생성단계는 FACS 에서 제안한 Action Unit 을 조합하고 얼굴표정에 따라 필요한 근육의 강도를 조절하여 더 자연스럽고 실제감 있는 얼굴표정 애니메이션을 보여준다.

  • PDF

Structural Analysis of Facial Expressions Measured by a Standard Mesh Frame (표준형상모형 정합을 통한 얼굴표정 구조 분석)

  • 한재현;심연숙;변혜란;오경자;정찬섭
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • /
    • pp.271-276
    • /
    • 1999
  • 자동 표정인식 및 합성 기술과 내적상태별 얼굴표정 프로토타입 작성의 기초 작업으로서 특정 내적상태를 표현하는 얼굴표정의 특징적 구조를 분석하였다. 내적상태의 평정 절차를 거쳐 열 다섯 가지의 내적상태로 명명된 배우 여섯 명에 대한 영상자료 90장을 사용하여 각 표정의 특징적 구조를 발견하고자 하였다. 서로 다른 얼굴들의 표준화 작업과 서로 다른 표정들의 직접 비교 작업에 정확성을 기하기 위하여 각 표정 표본들을 한국인 표준형상모형에 정합하였다. 정합 결과로 얻어진 각 얼굴표정의 특징점에 대해 모형이 규정하고 있는 좌표값들만으로는 표정해석이 불가능하며 중립얼굴로부터의 변화값이 표정해석에 유효하다는 결론을 얻었다. 표정의 특징적 구조는 그 표정이 표현하는 내적상태가 무엇인가에 따라 발견되지 않는 경우도 있었으며 내적상태가 기본정서에 가까울수록 비교적 일관된 형태를 갖는 것으로 나타났다. 내적상태별 특징적 표정을 결정할 수 있는 경우에 표정의 구조는 얼굴표정 요소들 중 일부에 의해서 특징지어짐을 확인하였다.

  • PDF

가상 인물의 얼굴 표정 애니메이션

  • 변혜원;김희정;박성춘
    • Broadcasting and Media Magazine
    • /
    • v.3 no.2
    • /
    • pp.23-30
    • /
    • 1998
  • 컴퓨터 그래픽스의 발전과 함께 등장한 가상인물은 최근 영화, TV, 게임 등의 다양한 매체에서 자주 접할수 있게 되었다. 가상인물은 사람을 닮은 등장인물로서, 그 생김새나 사실적인 동작, 자연스러운 얼굴 표정등이 관심의 대상이 된다. 특히, 얼굴 생김새나 표정은 가상인물을 개성 있는 인물로 재창조하는데 중요한 역할을 한다. 사람들은 타인의 얼굴 표정에 대해 매우 민감하게 반응하기 때문에 가상인물의 얼굴 표정을 제어하기가 더욱 어렵다. 가상인물의 얼굴 모델을 제작하고, 모델에게 표정을 부여하기 위해서 오래 전부터 다양한 방법들이 연구되어 왔다. 본 고에서는 가상인물의 얼굴 모델을 제작하고, 표정을 생성하는 방법에 관해 조명해 본다.

  • PDF

Face Animation Editor for the Korean Lip_Sync and Face Expression (한글 입술 움직임과 얼굴 표정 동기화를 위한 얼굴 애니메이션 편집기)

  • 송미영;조형제
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • /
    • pp.451-454
    • /
    • 2000
  • 본 논문은 한글 단어에 따른 한글 발음에 적합한 입술의 움직임을 자동 생성하며 또한 단어에 적절한 얼굴 보정을 생성할 수 있는 입순 움직임과 얼굴 표정을 동기화하는 3차인 일관애니메이션 편집기를 구축하였다. 얼굴 애니메이션 편집기에서 얼굴 표정은 근육 기반 모델 방법으로 정의된 각 얼굴 부위별 근육에 따라 가중치를 조절하여 생성하여 입술 움직임은 텍스트 구동 방법으로 음소에 따른 정의된 입모양 연속적으로 표현하여 동작한다. 또한 이렇게 생성된 얼굴 표정을 저장관리한다. 따라서 3차원 얼굴 애니메이션 편집기는 6가지의 기본 얼굴 표정을 자동적으로 생성할 수 있으며 또한 입력 단어에 적합하도록 각 얼굴 부위별 근육 움직임을 편집한 수 있다. 이렇게 생성된 얼굴 표정들은 데이터베이스에 저장관리할 수 있으며 컴퓨터 대화시 자동적으로 입력 단어에 적합한 입술의 움직임과 얼굴 표정을 동기화하여 자연스러운 3차원 얼굴 애니메이션을 표현할 수 있다.

  • PDF

Effects of the facial expression's presenting type and areas on emotional recognition (얼굴 표정의 제시 유형과 제시 영역에 따른 정서 인식 효과)

  • Lee, Jung-Hun;Kim, Hyuk;Han, Kwang-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • /
    • pp.1393-1400
    • /
    • 2006
  • 정서를 측정하고 나타내는 기술이 발전에 따라 문화적 보편성을 가진 얼굴표정 연구의 필요성이 증가하고 있다. 그리고 지금까지의 많은 얼굴 표정 연구들은 정적인 얼굴사진 위주로 이루어졌다. 그러나 실제 사람들은 단적인 얼굴표정만으로 정서를 인식하기 보다는 미묘한 표정의 변화나 얼굴근육의 움직임 등을 통해 정서상태를 추론한다. 본 연구는 동적인 얼굴표정이 정적인 얼굴표정 보다 정서상태 전달에서 더 큰 효과를 가짐을 밝히고, 동적인 얼굴 표정에서의 눈과 입의 정서인식 효과를 비교해 보고자 하였다. 이에 따라 15 개의 형용사 어휘에 맞는 얼굴 표정을 얼굴전체, 눈, 입의 세 수준으로 나누어 동영상과 스틸사진으로 제시하였다. 정서 판단의 정확성을 측정한 결과, 세 수준 모두에서 동영상의 정서인식 효과가 스틸사진 보다 유의미하게 높게 나타나 동적인 얼굴 표정이 더 많은 내적정보를 보여주는 것을 알 수 있었다. 또한 얼굴전체-눈-입 순서로 정서인식 효과의 차이가 유의미하게 나타났으며, 부정적 정서는 눈에서 더 잘 나타나고 긍정적 정서는 입에서 더 잘 나타났다. 따라서 눈과 입에 따른 정서인식이 정서의 긍정성-부정성 차원에 따라 달라짐을 볼 수 있었다.

  • PDF

A Design and Implementation of 3D Facial Expressions Production System based on Muscle Model (근육 모델 기반 3D 얼굴 표정 생성 시스템 설계 및 구현)

  • Lee, Hyae-Jung;Joung, Suck-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.932-938
    • /
    • 2012
  • Facial expression has its significance in mutual communication. It is the only means to express human's countless inner feelings better than the diverse languages human use. This paper suggests muscle model-based 3D facial expression generation system to produce easy and natural facial expressions. Based on Waters' muscle model, it adds and used necessary muscles to produce natural facial expressions. Also, among the complex elements to produce expressions, it focuses on core, feature elements of a face such as eyebrows, eyes, nose, mouth, and cheeks and uses facial muscles and muscle vectors to do the grouping of facial muscles connected anatomically. By simplifying and reconstructing AU, the basic nuit of facial expression changes, it generates easy and natural facial expressions.

얼굴 표정 인식 기술

  • Heo, Gyeong-Mu;Gang, Su-Min
    • ICROS
    • /
    • v.20 no.2
    • /
    • pp.39-45
    • /
    • 2014
  • 얼굴 표정 인식은 인간 중심의 human-machine 인터페이스의 가장 중요한 요소 중 하나이다. 현재의 얼굴 표정 인식 기술은 주로 얼굴 영상을 이용하여 특징을 추출하고 이를 미리 학습시킨 인식 모델을 통하여 각 감정의 범주로 분류한다. 본 논문에서는 이러한 얼굴 표정 인식 기술에 사용되는 표정 특징 추출 기법과 표정 분류 기법을 설명하고, 각 기법에서 많이 사용되고 있는 방법들을 간략히 정리한다. 또한 각 기법의 특징들을 나열하였다. 또한 실제적 응용을 위해서 고려해야할 사항들에 대하여 제시하였다. 얼굴 표정 인식 기술은 인간 중심의 human-machine 인터페이스를 제공할 뿐만 아니라 로봇 분야에서도 활용 가능할 것으로 전망한다.

Analysis of facial expressions using three-dimensional motion capture (3차원동작측정에 의한 얼굴 표정의 분석)

  • 박재희;이경태;김봉옥;조강희
    • Proceedings of the ESK Conference
    • /
    • /
    • pp.59-65
    • /
    • 1996
  • 인간의 얼굴 표정은 인간의 감성이 가장 잘 나타나는 부분이다 . 따라서 전통적으로 인간의 표정을 감 성과 연관 지어 연구하려는 많은 노력이 있어 왔다. 최근에는 얼굴 온도 변화를 측정하는 방법, 근전도(EMG; Electromyography)로 얼굴 근육의 움직임을 측정하는 방법, 이미지나 동작분석에 의한 얼굴 표정의 연구가 가능 하게 되었다. 본 연구에서는 인간의 얼굴 표정 변화를 3차원 동작분석 장비를 이용하여 측정하였다. 얼굴 표정 의 측정을 위해 두가지의 실험을 계획하였는데, 첫번 째 실험에서는 피실험자들로 하여금 웃는 표정, 놀라는 표정, 화난 표정, 그리고 무표정 등을 짓게 한 후 이를 측정하였으며, 두번째 실험에스는 코미디 영화와 공포 영화를 피 실험자들에게 보여 주어 피실험자들의 표정 변화를 측정하였다. 5명의 성인 남자가 실험에 참여하였는데, 감성을 일으킬 수 있는 적절한 자극 제시를 못한 점 등에서 처음에 기도했던 6개의 기본 표정(웃음, 슬픔, 혐오, 공포, 화남, 놀람)에 대한 모든 실험과 분석이 수행되지 못했다. 나머지 부분을 포함한 정교한 실험 준비가 추후 연구 에서 요구된다. 이러한 연구는 앞으로 감성공학, 소비자 반응 측정, 컴퓨터 애니메이션(animation), 정보 표시 장치(display) 수단으로서 사용될 수 있을 것이다.

  • PDF