• Title/Summary/Keyword: 열전달

Search Result 3,691, Processing Time 0.133 seconds

Heat Transfer Simulation of the Vehicle Heater (차량용 무시동 히터의 열전달 해석)

  • Lee, Jun-Sun;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1004-1006
    • /
    • 2010
  • 차량에 사용되는 무시동 히터 열교환기의 효율 개선을 위하여 열전달 해석을 수행하였다. 연구에 사용된 히터는 연료 공급관을 통해 연소부로 연료를 공급하고 연소시켜, 열교환기에 열을 전달한다. 열전달 효율을 증대시키기 위하여 열전달면 및 연소면의 형상을 해석적으로 개발하였다. 개선된 열교환기 모델은 외부 형상을 기존 제품과 동일하게 설계하여 단품상으로 교체가 가능하도록 설계 하였다. 해석 결과 기존 모델에 대비 개선된 모델에서 열전달 효율이 약 5.6배 향상되었다.

  • PDF

Heat Transfer Characteristics of Cost Effective Plate Fin-tube Condenser for Household Refrigerator (가정용 냉장고의 응축기 비용저감을 위한 판형 핀-관 열교환기의 열전달 특성)

  • Son, Young-Woo;Lee, Jang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.323-327
    • /
    • 2008
  • 본 연구는 판형 핀-관 열교환기의 열전달 특성을 상용 CFD 코드인 SC/Tetra를 사용하여 해석한 내용에 관한 것이다. 해석조건은 입구속도 0.63 m/s, 튜브온도 $44.5^{\circ}C$이다. 해석 열교환기는 총6가지로 검토하였으며 각각의 온도분포와 유동패턴을 해석하고 판형 핀-관 열교환기의 열전달 특성을 비교 검토하였다.

  • PDF

Application of Exergy to the Analysis and Optimization of Heat Transfer Processes (열전달 과정의 해석과 최적화를 위한 엑서지의 응용)

  • Auracher H.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.6
    • /
    • pp.542-549
    • /
    • 1987
  • 중요한 기본을 요약하고 엑서지를 에너지 변환에서 가장 중요한 기본 과정에 응용하는 열전달 문제를 제시한다. 열전달로 인한 엑서지 손실과 고온체, 저온체의 단열, 열교환기의 설계와 관련된 결과를 논의한다. 또한 비아제오트로픽(non-azeotropic) 혼합물을 응용한 열펌프 열교환기에서의 엑서지 절약에 대한 연구를 설명한다. 열전달과 압력강하로 인한 손실의 합인 총엑서지 손실이 최소로 되는 최적의 Reymolds 수가 존재함을 보여준다.

  • PDF

Pressure drop and heat transfer characteristics of a flat-plate solar collector with heat transfer enhancement device (열전달 향상 장치에 따른 평판형 태양열 집열기의 압력강하 및 열전달 특성)

  • Ahn, Sung-Hoo;Shin, Jee-Young;Son, Young-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.453-460
    • /
    • 2013
  • The surface roughness and heat transfer enhancement devices are known to increase the performance of a flat plate soar collector. This study includes the experiments on the effect of the several heat transfer enhancement devices inserted in duct to simulate the flat-plate solar collector. Experiment was basically at a constant heat flux on the upper duct wall. Inserted heat transfer enhancement devices are Chamfered rib $10^{\circ}$, Chamfered rib $20^{\circ}$, Rib & Groove and Rib & Dimple. Reynolds number is in the range of 2,300 to 22,000 which corresponds to turbulent regime. With the heat transfer enhancement devices, heat transfer would increase by the secondary flow and the increase of the heat transfer area. Pressure drop also increases with the insertion of the enhancement devices. Rib & Dimple model is the best in heat transfer enhancement, however, Chamfered rib $10^{\circ}$ model is the lowest in the pressure drop. Considering the heat transfer enhancement simultaneously with low pressure drop increase, performance factor was the best for the Chamfered rib $10^{\circ}$.

A Preliminary Experiment for Rayleigh-Benard Natural Convection for Severe Accident Condition (중대사고시 노심용융물의 Rayleigh-Benard 자연대류 예비 실험)

  • Moon, Je-Young;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.254-264
    • /
    • 2012
  • Rayleigh-Benard natural convection experiments were carried out as the preliminary experiment to simulate the natural convection of the core melt at the severe accident conditions. This work focused on the influences of plate separation distance(s), the existence of the side walls and crust geometries of upper and lower plates. Based upon the analogy concept, a cupric acid-copper sulfate electroplating system($H_2SO_4-CuSO_4$) was employed as the mass transfer system and measurements were made for $Ra_s$ ranging from $1.06{\times}10^7$ to $2.91{\times}10^{10}$. The test results measured for a single horizontal plate were in good agreement with the correlation reported by McAdams and those for two horizontal plates showed the similar trend to the existing Rayleigh-Benard heat transfer correlations developed by Dropkin and Somerscales, Globe and Dropkin. The measured heat transfer rate decreased with the increasing separation distance between the two plates and became similar to those for a single horizontal plate. Fin arrays mounted on both upper and lower plates enhanced the heat transfer rates. For all cases, the heat transfer rates measured for open side walls are higher than those for closed ones.

Experimental Study on Effect of Boiling Heat Transfer by Ultrasonic Vibration (초음파 진동이 비등열전달 과정에 미치는 영향에 관한 실험적 연구)

  • Na Gee-Dae;Oh Yool-Kwon;Yang Ho-Dong
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.35-44
    • /
    • 2006
  • This study experimentally investigates effect of boiling heat transfer when ultrasonic vibration was applied. Under the wall temperature condition, temperature distribution in a cavity was measured during the boiling process and heat transfer coefficient of convection, sub-tooled boiling and saturated boiling states were measured with and without ultrasonic vibration, respectively. Also, the profiles of the pressure distribution in acoustic field measured by a hydrophone were compared with the augmentation ratios of heat transfer calculated by local heat transfer coefficient. Result of this study, heat transfer coefficient and augmentation ratio of heat transfer is higher with ultrasonic waves than without one. Especially, augmentation ratio of heat transfer is more increased the convection state than sub-cooled boiling and saturated boiling states. Acoustic pressure is relatively higher near ultrasonic transducer than other points where is no installed it and affects the augmentation ratio of heat transfer.

Analysis of Heat Transfer Characteristics of Metal-Hydride Module for the Actuation of a Rehabilitative System (재활시스템 구동용 수소저장합금 모듈의 열전달 특성 비교 분석)

  • Kim, Kyong;Kim, Seong-Hyun
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.165-171
    • /
    • 2017
  • We suggested the novel actuator mechanism to apply to wearable assistive system for the improvement of quality of life of the elderly or the people with disability using it. Characteristics of metal-hydride (MH) actuator is investigated in the novel actuating concept. The hydrogen equilibrium pressure increases when hydrogen is desorbed by heating a SMH alloys, whereas by cooling that alloys, the hydrogen equilibrium pressure decreases and hydrogen is absorbed. However, there are too long times in heat transfer mechanism to apply the assistive and rehabilitative device. In this study, 3 different SMH module were designed and characteristics of heat transfer in each SMH module were investigated based on the heat simulation.

Boiling heat transfer characteristics of FC-72 in parallel micro-channels (병렬 마이크로 채널에서 FC-72의 비등 열전달 특성)

  • Choi, Yong-Seok;Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Seong;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1032-1038
    • /
    • 2014
  • In this study, an experimental study was performed to understand the boiling heat transfer characteristics of FC-72 in parallel micro-channels. The parallel micro-channels contained channels having a $0.2mm{\times}0.45mm$ [$H{\times}W$] cross section and length of 60 mm. And heat flux was varied from 16.4 to $25.6kW/m^2$ and mass fluxes from 300 to $500kg/m^2s$. The measured heat transfer coefficient was sharply decreased at lower vapor quality and then it was kept approximately constant as the vapor quality is increased. From the experimental results, the boiling heat transfer mechanism of FC-72 was confirmed and the measured heat transfer coefficient was compared and analyzed with the existing correlations to predict the heat transfer coefficient.

Effects of Prandtl Numbers on Heat Transfer of Backward-Facing Step Laminar Flow with a Pulsating Inlet (입구유동 가진이 있는 층류 후향계단 유동에서 열전달에 대한 프란틀수 효과해석)

  • Kim, Won-Hyun;Park, Tae-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.923-930
    • /
    • 2012
  • The wall heat transfer of backward-facing step laminar flows with different Prandtl numbers and a pulsating inlet is investigated by unsteady simulations. The inlet is perturbed by the variation of frequency and amplitude. Temperature-dependent transport properties are adopted. Various characteristics of the wall heat transfer are explained by the variation of the thermal boundary layer. For Pr < 1, the wall heat transfer of temperature-dependent properties is decreased compared to that of constant properties, whereas it increases for Pr < 1. In addition, the wall heat transfer increases depending on the pulsating amplitude. However, the results of frequency variation for St < 0.2 show that the heat transfer is strongly enhanced at a specific frequency. In particular, the increase in the wall heat transfer is strongly related to the root mean square of the fluctuations of the reattachment length.

A study on the temperature distribution characteristics in the tube modules of a heat recovery steam generator ith the change of heat transfer modeling (배열회수 보일러 전열관군에서 열전달 모델링에 따른 온도 분포 특성 연구)

  • Ha, Ji Soo
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • A heat recovery steam generator consists of inlet expansion duct and heat transfer tube bank modules. For the enhancement of heat transfer in the tube bank modules, the flow should be uniform before the 1st heat transfer tube bank module. The present study has been carried out to analyze the flow characteristics in the inlet expansion duct of a heat recovery steam generator by using numerical flow analysis. The aim of the present study is to establish the proper heat transfer mechanism in the heat transfer tube bank modules by the comparison of the heat transfer models, the case with the constant heat loss per unit volume and the case with heat loss by using inner and outer convective heat transfer coefficient of heat transfer tube. From the present research, it could be seen that the heat transfer mechanism with using inner and outer convective heat transfer coefficient derives more proper temperature distribution results and the acceptance criteria of the temperature distribution within ${\pm}10^{\circ}C$ before SCR is satisfied with using this heat transfer mechanism.