• Title, Summary, Keyword: 오픈폼

Search Result 44, Processing Time 0.035 seconds

선박의 최적 운항 자세 도출 및 수직 몰수 익형 주위 유동 해석을 위한 EDISON 해석자 활용

  • Kim, Yeon-Ju;Jo, Hui-Ju;Park, Sang-Min
    • Proceeding of EDISON Challenge
    • /
    • /
    • pp.35-43
    • /
    • 2016
  • 본 연구에서는 EDISON의 해석자를 활용하여 선박의 최적 운항 자세 도출과 같은 실용적 문제 해석뿐 만 아니라 자유 수면 및 대칭 경계 조건이 수직한 몰수 익형 주위 유동에 미치는 영향을 분석하는 학술적 연구를 수행하였다. 선박의 자세에 따른 저항 변화를 분석한 결과 0.5m 선수 트림에서 선체 저항이 가장 작은 것으로 나타났으며, 이는 유동 가속에 의한 선수 어깨부의 낮은 압력 및 선미부에서의 압력 회복에 의한 것이다. 반면, 1.0m 선미 트림에서 선체 저항이 가장 큰 것으로 나타났는데, 평형 상태보다 선미부의 압력 회복이 약하기 때문이다. 또한 자유 수면과 대칭 경계 조건이 날개 성능에 미치는 영향을 분석한 결과, 비현실적 대칭경계 조건으로 인해 날개 양력이 13%~16% 크게 나타났으므로 대칭경계조건을 사용할 경우에는 이러한 오차를 감안해야 한다.

  • PDF

Analysis of Inverse Heat Conduction Problem Using OpenFOAM and VisualDoc (OpenFOAM 과 VisualDoc 을 이용한 역열전도 문제의 해석)

  • Kim, Sung-Won;Kim, Sun Kyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.539-544
    • /
    • 2013
  • This study provides a solution method for the inverse heat conduction problem based on a combination of a public domain CAE (computer aided engineering) software and a commercial CAO (computer aided optimization) software. The solver system has been implemented without any in-house coding. The proposed method is simple to implement. Moreover, it can be easily reproduced.

Openstack based Cloud Platform Test Case Generator (OpenStack기반 클라우드 플랫폼 테스트 케이스 생성기)

  • Sim, Jinsup;Kim, Woongsup
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.895-898
    • /
    • 2015
  • OpenStack는 오픈소스 클라우드 플렛폼이며, Iaas 서비스를 제공하고 있다. Iaas 서비스를 제공하기 위해 많은 서비스 제공되고 있는 데, 이런 다양한 서비스를 테스트하기 위해, OpenStack에서는 Tempest 라는 테스팅 도구를 제공하고 있다. 우리의 논문에서는 이 Tempest라는 테스팅 툴에서 사용하는 테스트 시나리오를 사용자가 XML을 통해 손쉽게 작성하고, 사용자가 원하는 테스트 내용에 맞게 커스터 마이징 하는 방법을 제안한다.

Studies on the Water Resistance Properties of the Polyurethane Foam Silicone Foal Control Agent according to the Type of Silicone Foam Stabilizer (실리콘 정포제의 종류에 따른 폴리우레탄 폼 지수제의 내수성 특성에 관한 연구)

  • Kim, Keun-Hur;Kim, Hyun-Min;Kim, Sung-Rae;Kim, Young-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.60-66
    • /
    • 2016
  • Polyurethane foam index a of the cell structure and the absorption change by using the foam stabilizer of six to investigate the polyurethane foam index producing the agent to the siloxane analyzed with silicon foam stabilizer with FE-SEM in accordance with the characteristics of the silicon-based foam stabilizer cell structure of the primary DC-193 on the chain ends is PO n dog bond, DC-2585, DC-5125, DC-198 has been confirmed as a close cell, silicone surfactant is combined EO n dog to a siloxane main chain terminus DC-5043 and DC-5598 that appeared to open cell structure. In addition, most absorption of the DC-5043 appeared was the size of the open cell greatest formed by the absorption of the cell structure change this absorption of the size of the close cell most detailed and uniform DC-193 appeared small household water-resistant best many showed. The performance test of the water was found to be excellent.

Application of Open-source OpenFOAM for Simulating Combustion and Heating Performance in Horizontal CGL Furnace (수평형 CGL 소둔로의 연소 및 가열 성능 해석을 위한 오픈소스 OpenFOAM 기반 전산유체 해석)

  • Kim, GunHong;Oh, Kyung-Teak;Kang, Deok-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.553-561
    • /
    • 2017
  • The main motivation for this study was to establish a CFD-based procedure for the analysis of heating characteristics, particularly in industrial furnaces. As certain open-source software packages have gained popularity in dealing with complex industrial problems, the OpenFOAM framework was selected for further development of advanced physical models to meet industrial requirements. In this study, the newly developed comprehensive model was applied to simulate physical processes in the full-scale horizontal furnace of a continuous galvanizing line (CGL). The numerical results obtained indicate that the current approach predicts heating characteristics reasonably well. It was also found that radiative heat transfer plays a dominant role in heating the moving strip. To improve the predictability of our method, further work is required to model the turbulence-chemistry interaction realistically, as well as to impose a physically correct thermal wall boundary condition.

The Extension and Validation of OpenFOAM Algorithm for Rotor Inflow Analysis using Actuator Disk Model (Actuator Disk 모델 기반의 로터 유입류 해석을 위한 OpenFOAM 알고리즘 확장)

  • Kim, Tae-Woo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1087-1096
    • /
    • 2011
  • The purpose of current study is to develop and verify the newly developed solver for analyzing rotor flow using the open-source code. The algorithm of standard solver, OpenFOAM, is improved to analyze the rotor inflow with and without fuselage. For the calculation of the rotor thrust, the virtual blade method based on the blade element method is employed. The inflow velocities on the rotor disk used to specify the effective angle of attack, have been included in the solver. The results of the current rotor inflow analysis are verified by comparing with other experimental and numerical results. It was confirmed that the modified solver provides satisfactory results for rotor-fuselage interaction problem.

Verification of the Open Source Code, OpenFOAM to the External Flows (외부 유동 해석에 대한 오픈 소스 코드, OpenFOAM의 검증)

  • Kim, Tae-Woo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.702-710
    • /
    • 2011
  • This paper aims to verify the applicability of OpenFOAM, the widely recognized open source CFD code, to external flows commonly found in aeronautical problems. To this end, several representative flow cases are selected first from subsonic to supersonic flow fields. Then, the computational results obtained from OpenFOAM are systematically compared against available data from experiments and other numerical codes. It was found that the strength and location of shock are well predicted and the effects of boundary conditions on the computed results are reviewed. Subsonic flow with massive separation is selected to validate the prediction capability of OpenFOAM. Based on the current results, the limitation and possibility of OpenFOAM was confirmed and for future study using OpenFOAM was suggested.

Customized Aerodynamic Simulation Framework for Indoor HVAC Using Open-Source Libraries (공개 라이브러리 기반 실내 공조 맞춤형 전산모사 시스템 개발)

  • Sohn, Ilyoup;Roh, Hyunseok;Kim, Jaesung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.135-143
    • /
    • 2017
  • A customized CFD simulator to perform thermo-fluid dynamic simulations of an HVAC for an indoor space is presented. This simulation system has been developed for engineers studying architectural engineering, as the HVAC mechanical systems used in housings and buildings. Hence, all functions and options are so designed to be suitable that they are suitable for non-CFD experts as well as CFD engineers. A Computational mesh is generated by open-source libraries, FEMM (Finite Element Method Magnetics), and OpenFOAM. Once the boundary conditions are set, the fluid dynamic calculations are performed using the OpenFOAM solver. Numerical results are validated by comparing them with the experimental data for a simple indoor air flow case. In this paper, an entirely new calculation process is introduced, and the flow simulation results for a sample office room are also discussed.

Direct Numerical and Large Eddy Simulations of Transitional Flows around Turbulence Stimulators at Very Low Speeds (초저속 영역에서 난류 촉진기 주위 천이 유동의 직접 수치 및 대형 와 모사)

  • Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.265-273
    • /
    • 2018
  • Direct numerical and large eddy simulations of transitional flows around studs installed on flat plate and bulbous bow have been performed to investigate an effectiveness of turbulence stimulators on laminar-to-turbulence transition at a very low speed. The flow velocity was determined to be 0.366m/s corresponding to 4 knots of full-scale ship speed when the objective ship was Kriso container ship. The spatial evolution of skin friction coefficient disclosed that a fully development of turbulence was observed behind the second stud installed on flat plate while a rapid transition from laminar to turbulence gave rise to the fully development of turbulence behind the first stud installed on bulbous bow. A comparison of streamwise mean velocity profiles showed that the viscous sublayer and log-layer were in good agreement with previous results although the friction velocity of Smagrosinsky sub-grid scale model was about 10% larger than that of direct numerical simulation. While the turbulence intensities of bulbous bow was similar to those of flat plate in inner region, larger intensities of turbulence were observed in outer region of bulbous bow than those of flat plate.

Numerical Investigation about the Dominating Factors of Heat Increasing in a Gas-Dynamic igniter (가스 다이내믹 점화기의 온도상승 지배인자에 관한 수치적 연구)

  • Lee, Jaewon;Choi, Hyosang;Lim, Daehong;Seo, Seonghyeon;Kang, Sang Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • /
    • pp.734-738
    • /
    • 2017
  • In the present study, dominant factors for temperature increase and effects of mass entering the resonance tube of the gas-dynamic igniter are investigated. Using RhoCentralFoam solver in OpenFOAM program, numerical simulation is performed for three different cases. In the results, the heating of the working fluid is found to be a result from aero-thermodynamic phenomena. Appropriate mass entering to the resonance tube is found to be an important dominant factor as well.

  • PDF