• Title, Summary, Keyword: 원심주조

Search Result 48, Processing Time 0.033 seconds

Effect of Forging Condition on the Microstructure and Mechanical Properties of Centrifugal Casted 9Cr-1Mo Heat-Resisting Steel (9Cr-1Mo 내열강의 미세조직 및 기계적 성질에 미치는 원심주조 후 단조 조건의 영향)

  • Lee, S.M.;Kim, Y.K.;Choi, H.G.;Lee, J.K.;Cho, Y.K.;Park, Y.T.;Kang, C.Y.
    • Journal of the Korea Society For Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.84-89
    • /
    • 2010
  • The effect of forging condition on the microstructure and mechanical properties of 9Cr-1Mo heat-resisting steel was investigated. Microstructure of centrifugal casted 9Cr-1Mo heat resisting steel and forged heat resisting steel are consisted of martensite. With the increase of forging ratio, tensile strength and hardness increased, while elongation and impact value decreased. By increasing of forging starting temperature and finishing temperature, tensile strength and hardness increased, while elongation and impact value decreased. We obtained the optimum forging conditions as follow, forging ratio is 30%, forging starting temperature is $1200^{\circ}C$ and forging finishing temperature is $950^{\circ}C$.

Effect of Forging Condition on the Microstructure and Mechanical Properties in Centrifugal Casted Heat Resistant Steel (원심주조된 내열강의 미세조직 및 기계적성질에 미치는 단조 조건의 영향)

  • Kang, C.Y.;Lee, S.M.;Jo, D.H.;Park, Y.T.;Lee, D.H.;Kim, Y.C.
    • Journal of the Korea Society For Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.47-52
    • /
    • 2009
  • The effect of forging start temperature, forging ratio on the microstructure and mechanical properties of B7B4 steel ware investigated. Microstructure of centrifugal casted B7B4 steel consisted of martensite and ferrite phase. The volume fraction of ferrite increased with increase of forging start temperature and decreased with increase of forging ratio. Tensile strength and hardness decreased with higher of forging start temperature, while impact value and elongation increased with higher of forging start temperature. With increase of forging ratio, tensile strength rapidly increased up to the forging ratio of 30%, and then slowly increased, but elongation was decreased. Hardness and impact value rapidly increased with increase of forging ratio.

  • PDF

Effects of Cooling Method Followed by Casting on the Interfacial and Mechanical Properties of Dental CP-Ti Casts (치과용 티타늄 주조체의 냉각방법이 표면반응층 및 기계적 특성에 미치는 영향)

  • Moon, Soo;Jung, Jun-Young;Kim, Ki-Ju;Lee, Jin-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.375-380
    • /
    • 2003
  • In this study. we have intended to control the properties of surface reaction zone generated between pure titanium and oxide investment moulds. Commercially pure titanium was centrifugally casted and silica$.$alumina based phosphate bonded investment was used as the mould material. The effect of cooling methods after casting on the surface reaction zone and mechanical properties of casts were investigated. The resulting casts showed the multilayered surface reaction zone regardless of cooling method. Especially. water cooling method produced the titanium casts with thinner surface reaction zone. weaker strength. and higher elongation properties compared to air cooling. It can thus be known that the resulting casts had satisfactory mechanical properties as dental materials. From these results, the cooling rate dependence of interfacial and mechanical properties can be attributed to the diffusion of oxygen from casting environment, which control the reaction of titanium and mould.

The Effects of Centrifugal Casting Conditions on the Structure and Mechanical Properties in Fabrication Development of Super Heat-Resisting Steel Pipe of HP Alloy Modified with Nb (Nb을 첨가한 HP 초내열강관의 제조개발에 필요한 원심주조 조건이 조직과 기계적성질에 미치는 효과)

  • Choi, Sang-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.566-575
    • /
    • 1994
  • The effects of varying the pouring temperature and the die preheating temperature in producing centrifugally cast HP alloy modified with Nb was evaluated on the basis of the resultant macrostructure, microstructure and hardness of these castings. Increased die preheating temperatures and pouring temperatures resulted in an increase in the thickness of the columnar dendritic zone, the primary and secondary dendrite arm spacing and the thickness of the zone of porosity at the casting I.D.(inner diameter). Lower die preheating temperature and pouring temperatures result in increased grain fineness and an increased zone of equiaxed grains. A higher hardness was achieved toward the casting O.D.(outer diameter) compared to the casting I.D., attributable to alloy segregation toward the casting I.D. and segregation differences resulting from reduced solidification cooling rates toward the casting I.D. Also, a higher hardness was realized at the cold end of the casting attributed to a more uniform distribution of carbides.

  • PDF

Effects of P Addition and Homogenizing Heat Treatment on the Mechanical Properties of Centrifugal Cast Cu-Sn-Ni-P Alloy (원심주조한 Cu-Sn-Ni-Pb계 합금의 기계적 성질에 미치는 P첨가와 균질화 처리의 영향)

  • Kwon, Young-Hwan;Jea, Chang-Wooing;Yoon, Jae-Hong;Kang, Chang-Yong;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.443-449
    • /
    • 1997
  • The purpose of this study is to investigate the effect of P addition and homogenizing heat treatment on the mechanical properties of Cu-Sn-Ni alloy. The addition of P was 0.025wt.%P to 0.085wt.%P and homogenizing heat-treated at 400, 500, $600^{\circ}C$ under $N_2$ gas atmosphere. Mechanical properties was investigated in this study were Rockwell hardness, tensile strength, and elongation. Tensile strength and elongation increased with P and homogenizing time. Temperature was significantly influence on mechanical properties. Hardness decreased with increasing homogenizing time and temperature, but 0.085wt.%P specimen was showed higher hardness and lower tensile strength and elongation than 0.073wt.%P specimen due to the presence of more $Cu_3P$ in matrix.

  • PDF