• Title, Summary, Keyword: 원자력수소시스템

Search Result 62, Processing Time 0.06 seconds

Development of a Raman Lidar System for Remote Monitoring of Hydrogen Gas (수소 가스 원격 모니터링을 위한 라만 라이다 시스템 개발)

  • Choi, In Young;Baik, Sung Hoon;Park, Nak Gyu;Kang, Hee Young;Kim, Jin Ho;Lee, Na Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.166-171
    • /
    • 2017
  • Hydrogen gas is a green energy sources because it features no emission of pollutants during combustion. But hydrogen gas is very dangerous, being flammable and very explosive. Hydrogen gas detection is very important for the safety of a nuclear power plant. Hydrogen gas is generated by oxidation of nuclear fuel cladding during a critical accident, and leads to serious secondary damage in the containment building. This paper discusses the development of a Raman lidar system for remote detection and measurement of hydrogen gas. A small, portable Raman lidar system was designed, and a measurement algorithm was developed to quantitatively measure hydrogen gas concentration. To verify the capability of measuring hydrogen gas with the developed Raman lidar system, experiments were carried out under daytime outdoor conditions by using a gas chamber that can adjust the hydrogen gas density. As results, our Raman lidar system is able to measure a minimum density of 0.67 vol. % hydrogen gas at a distance of 20 m.

Nuclear Hydrogen Production Technology Development Using Very High Temperature Reactor (초고온가스로를 이용한 원자력수소생산 기술개발)

  • Kim, Yong-Wan;Kim, Eung-Seon;Lee, Ki-yooung;Kim, Min-hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.299-305
    • /
    • 2015
  • Nuclear hydrogen production technology is being developed for the future energy supply system. The sulfur-iodine thermo-chemical hydrogen production process directly splits water by using of the heat generated from very high temperature gas-cooled reactor, a typical Generation IV nuclear system. Nuclear hydrogen key technologies are composed of VHTR simulation technology at elevated temperature, computational tools, TRISO fuel, and sulfur iodine hydrogen production technology. Key technology for nuclear hydrogen production system were developed and demonstrated in a laboratory scale test facility. Technical challenges for the commercial hydrogen production system were discussed.

Study of a Method for Measuring Hydrogen Gas Concentration Using a Photon-counting Raman Lidar System (광 계수 방식의 라만 라이다 시스템을 이용한 원격 수소 가스 농도 계측 방법에 대한 연구)

  • Choi, In Young;Baik, Sung Hoon;Cha, Jung Ho;Kim, Jin Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.3
    • /
    • pp.114-119
    • /
    • 2019
  • This paper discusses the development of a Raman lidar system for remote detection and measurement of hydrogen gas by using a photon counter. The Raman signal of the hydrogen gas is very weak and has a very low signal-to-noise ratio. The photon counter has the advantage of improving the signal-to-noise ratio, because it has a discriminator to eliminate the background noise from the Raman signal of the hydrogen gas. Therefore, a small and portable Raman lidar system was developed using a low-power pulsed laser and a photon-counter system to measure the hydrogen gas concentration remotely. To verify the capability of measuring hydrogen gas using the developed photon-counting Raman lidar system, experiments were carried out using a gas chamber in which it is possible to adjust the hydrogen gas concentration. As a result, our photon-counting Raman lidar system is seen to measure a minimum concentration of 0.65 vol.% hydrogen gas at a distance of 10 m.

하나로 냉중성자원 진공계통의 운전 특성

  • Son, U-Jeong;Lee, Mun;Kim, Min-Su;Choe, Ho-Yeong;Han, Jae-Sam;Jo, Seong-Hwan;Heo, Sun-Ok;An, Guk-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.366-366
    • /
    • 2011
  • 냉중성자원은 하나로 반사체탱크에 위치한 수직공에 설치되어 노심에서 발생하는 열중성자를 감속재인 액체수소층을 통과시켜 냉중성자를 생산하는 설비로 수소가를 충전하고 있는 수소계통이 있으며, 21K의 극저온 액체수소/기체수소 2상(ttwo-phase)을 유지하기 위해 외부에서 유입되는 열침입을 최소화하기 위해 진공계통이 설치되어 있다. 진공계통은 수조내기기 집합체(In-Pool Assembly : IPA)의 액체수소 열사이펀, 감속재 용기 등의 냉중성자원 극저온 부풀들의 단열을 위하여 진공용기 내부진공도를 공정진공도 이하로 유지하기 위한 계통으로 고진공펌프, 진공배기탱크 및 저진공펌프의 조합으로 두 개의 진공펌프시스템과 진공박스, 배기수집탱크 및 밸브박스를 포함한 연결배관으로 설계되었다. 저진공펌프를 이용하여 대기압에서 고진공펌프 작동압력까지 도달한 후 고진공펌프를 가동하여 공정진공도 이하의 진공도를 확보하고, 고진공펌프로부터 배기되는 배출가스는 고진공펌프 후단에 설치된 진공배기탱크에 포집되며, 필요 시 저진공펌프레 의하여 배기수집탱크로 배출된다. 진공펌프시스템은 진공용기 내부의 압력이 공정진동고 이하로 유지되도록 연속적으로 가동되어 진공단열이 가능하다. 본 논문은 감속재인 수소를 액화상태로 유지하며, 공정진공도 이하로 충분히 유지되어 운전되는 진공계통의 특성을 원자로 운전 주기별로 소개하고자 한다.

  • PDF

Numerical Study on Heat Transfer Characteristics in a directly Heated $SO_3$ Decomposer for the Sulfur-Iodine process (황-요오드 공정용 직접접촉 삼산화황 분해반응기내 열전달 특성에 관한 수치적 연구)

  • Choi, Jae-Hyuk;Shin, Young-Joon;Tak, Nam-Il;Lee, Ki-Young;Chang, Jong-Wha;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.2244-2249
    • /
    • 2007
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed by using a computational fluid dynamics code(CFD) with the CFX 5.7.1. The use of a directly heated decomposition reactor in conjunction with a VHTR allows higher decomposition reactor operating temperature. However, the thermochemical and hybrid hydrogen production processes accompanied with the high temperature and strongly corrosive operating conditions basically have material problems. In order to resolve these problems, we carried out the development of a structural material and equipment design technologies. The results show that the maximum temperature of the structural material (RA330) could be maintained at 800$^{\circ}C$ or less. Also, it can be seen that the mean temperature of the reaction region packed with catalysts in the $SO_3$ decomposition reactor could satisfy the temperature condition of around 850 $^{\circ}C$ which is the target temperature in this study.

  • PDF

Preliminary cost estimation for large-scale nuclear hydrogen production based on SI process (초고온가스원자로 열원 SI 공정을 이용한 원자력수소생산시스템 비용 예비 분석)

  • Yang, Kyoung-Jin;Choi, Jae-Hyuk;Lee, Ki-Young;Lee, Tae-Hoon;Lee, Kyoung-Woo;Kim, Mann-Eung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.723-726
    • /
    • 2009
  • As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GT-MHR are estimated in the necessary input data on a Korean specific basis. G4-ECONS developed by EMWG of GIF in 2008 was appropriately modified to calculate the cost for hydrogen production of SI process with VHTR as a thermal energy source rather than the LUEC. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if $CO_2$ capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of $CO_2$. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed.

  • PDF

High-Temperature Structural-Analysis Model of Process Heat Exchanger for Helium Gas Loop (I) (헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링 (I))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Yong-Wan;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1241-1248
    • /
    • 2010
  • In large-scale production of hydrogen, a PHE (Process Heat Exchanger) is a key component because the heat required to carry out the Sulfur-Iodine chemical reaction that yields hydrogen is transferred from a VHTR (Very High Temperature Reactor) by the PHE. Korea Atomic Energy Research Institute established a helium gas loop for conducting performance test of components that are used in the VHTR. In this study, as a part of high-temperature structural-integrity evaluation of a designed PHE prototype that is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal-expansion analysis for the designed PHE prototype. An appropriate constraint condition is proposed at the end of the in-flow and out-flow pipelines of the primary and secondary coolants and the proposed constraint condition will be applied to the design of the performance-test loop setup for the designed PHE prototype.