Discrete topology optimization processes of structures start from an initial design domain which is described by the topology of constant material densities. During optimization procedures, the structural topology changes in order to satisfy optimization problems in the fixed design domain, and finally, the optimization produces material density distributions with optimal topology. An introduction of initial holes in a design domain presented by Eschenauer et at. has been utilized in order to improve the optimization convergence of boundary-based shape optimization methods by generating finite changes of design variables. This means that an optimal topology depends on an initial topology with respect to topology optimization problems. In this study, it is investigated that various optimal topologies can be yielded under constraints of usable material, when partial solid phases are deposited in an initial design domain and thus initial topology is finitely changed. As a numerical application, structural topology optimization of a simple MBB-Beam is carried out, applying partial circular solid phases with varying sizes to an initial design domain.