• Title, Summary, Keyword: 위험원

Search Result 2,011, Processing Time 0.052 seconds

On the Safety Analysis of High Speed Railway Systems using the Hazard and Operability (HAZOP) technique (HAZOP을 이용한 고속철도시스템의 위험원 식별 및 안전성 분석에 관한 연구)

  • Jung, Ho-Jeon;Lee, Jae-Chon
    • Proceedings of the Safety Management and Science Conference
    • /
    • /
    • pp.527-534
    • /
    • 2012
  • 오늘날 기술의 발전으로 시스템들은 점차 대형화 복잡화 되어가고 있다. 이처럼 점차 대형화 복잡화 되어가고 있는 시스템들은 더욱 커진 사고 및 고장에 대한 위험을 내재하게 된다. 또한 대형 복합 시스템에서 발생하는 사고 및 고장은 바로 큰 재산피해나 인명피해와 직결 될 수 있다. 따라서 체계적인 안전관리의 필요성이 점차 커지고 있다. 이에 대응하여 철도, 항공, 해양 등의 산업에서는 각 산업에 적합한 안전관리체계를 수립하려 노력하고 있으며, 표준 및 매뉴얼을 제정하여 보급에 앞장서고 있다. 예로써 가장 활발히 안전관리체계의 도입을 추구하고 있는 항공 분야에서는 국제민강항공기구와 미 연방항공청의 주도로 안전관리체계에 대한 가이드와 매뉴얼을 만들어 각국의 사정에 맞는 안전관리체계를 도입할 수 있는 바탕을 제공 하고 있다. 이처럼 점차 중요해지고 있는 안전관리체계내에서도 위험원 식별 및 분석활동은 그 중요성이 크다. 이를 통해 도출되는 위험원 및 위험원의 영향 및 원인이 시스템 개발 및 운용에서 수행하게 될 안전관리활동의 바탕이 되기 때문이다. 따라서 위험원 식별 및 분석활동에 적용하기 위한 여러 기법에 대한 연구가 활발히 이뤄지고 있다. 본 논문에서는 여러 가지 위험원 식별 기법 중 HAZOP을 이용하여 고속철도시스템의 위험원 식별 및 분석을 수행 했다. 또한 HAZOP의 수행 및 위험원 식별 활동의 프로세스 모델을 제시함으로써 실질적인 위험원 식별 활동의 수행에 도움이 될 것으로 기대한다.

  • PDF

Hybrid Hazard Analysis for Improving Safety of Railway System (철도 시스템의 안전성 향상을 위한 하이브리드 위험원 분석)

  • Jeong, Daehui;Kwon, Gihwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.133-144
    • /
    • 2018
  • IEC 62278, the Railway System Safety Standard, requires for hazard analysis to prevent or control the hazard that the railway system may have. If hazard analysis is not performed sufficiently, there is a high probability that accidents will occur. For this reason, hazard analysis methods are actively studied. In this paper, we propose the hybrid hazard analysis method to combine two representative hazard analysis methods: reliability-based and system-theoretic. As the proposed method is complementary to existing ones, it covers both the hazard caused by failure of components and the hazard occurred from the unintended control between components. It applies to the development of a safety protection mechanism for multiple cruise control system that automatically control the speed of trains to avoid the collision among trains. As a result, we drive more safety requirements than the existing analysis methods and it turns out that the safety requirements protect the trains with respect to the identified hazards.

A Study on the Assessment of Hazardous Properties of Flammable liquids (인화성액체의 위험성평가에 관한 연구)

  • Lee, Bong-Woo;Park, Chul-Woo;Song, Haak;Kim, Hak-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • /
    • pp.276-285
    • /
    • 2009
  • 화학물질의 분류 및 표시의 국제표준화시스템(GHS)을 조기에 구축하고 국내에 사용하는 화학물질을 보다 안전하게 제조, 저장 및 운송하기 위하여 위험물안전관리법과 GHS시험 방법으로 다양한 인화성액체 시험을 실시하여 이들의 결과에 대한 연관성을 도출하고, 국내 실정에 적합한 국제표준화 시험방법을 선택가능방식(Building Block Approach)으로 제시하고자 한다. 위험물의 80%를 차지하는 인화성액체의 분류에 필요한 시험은 인화점이 가장 중요한 요소지만, 도료류와 같은 혼합물은 가연성액체량과 GHS-연소지속성에 따라 위험물/비위험물로 분류될 수 있다. 도료류는 두 시험의 분류결과가 대부분 비슷하게 나타나 GHS-연소지속성시험을 선택가능방식을 통해 우리나라에 적합하게 도입하는 것이 바람직 할 것으로 보인다.

  • PDF

An Improved Method of FTA and Associated Risk Analysis Reflecting Automotive Functional Safety Standard (자동차 기능안전 표준을 반영하는 개선된 FTA 및 위험원 분석 기법)

  • Jung, Ho-Jeon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.9-17
    • /
    • 2017
  • Ensuring the safety of automobiles and trains during system operation is regarded as indispensable due to the progress in unmanned operation. The automotive functional safety standard, ISO 26262, has been proposed to ensure the safe design of vehicles. This standard describes in detail the required risk analysis and evaluation procedure and safety measures, while appropriately reflecting the system design information. Therefore, much research has been done on the risk analysis procedure, wherein the design information is mostly extracted from physical components of similar systems already in operation, the information traced back to obtain constituent functions, and then methods of identifying risk sources are studied. This method allows the sources of risk to be identified quickly and easily, however if the design requirements are changed or systems are newly developed, others may be introduced which are not accounted for, thereby yielding mismatched design information. To resolve this problem, we propose a top-down analysis in order to utilize the system design information appropriately. Specifically, a conceptual system is designed to obtain the functions, which are then analyzed. Then, a function-based fault tree analysis is conducted, followed by a risk source analysis. In this paper, a case study of automotive safety is presented, revealing that the proposed method can analyze the risk sources with reduced possibility of omission by systematically reflecting the system design information.

Investigation of Radio Communications-based Train Control System with Interoperability (무선통신기반 열차제어시스템 상호운영성 연구)

  • Choi, June-Young;Park, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • This paper analyzes the hazard related to train control, the functional requirements for atrain control system(TCS) and the automatic train protection(ATP) functional allocation that ensures the interoperability of a radio communications-based TCS. In addition, the interoperability can be obtained using wireless communications technology standards and standardized functional allocations of TCS performed on the wayside and onboard. Using this information, an integrated operating system for a rail network can be constructed. The functional allocations of TCS that support interoperability, require hazard analysis of TCS and definition of the system requirements. The hazard factors for a TCS are confirmed through setting the train safety space control and train speed limit excess. Furthermore, this paper determines the impact of the hazard factors on the TCS and, defines the functional requirements for the TCS subsystems and the ATP wayside and onboard functional allocations.

Hazardous Area Identification Model using Automated Data Collection(ADC) based on BIM (BIM기반 자동화 데이터 수집기술을 활용한 위험지역 식별 모델)

  • Kim, Hyun-Soo;Lee, Hyun-Soo;Park, Moon-Seo;Lee, Kwang-Pyo;Pyeon, Jae-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.14-23
    • /
    • 2010
  • A considerable number of construction disasters occurs on pathway. A safety management in construction sites is usually performed to prevent accidents in activity areas. This means that safety management level of hazards on pathway is relatively minified. Many researchers have introduced that a hazard identification is fundamental of safety management. Thus, algorithms for helping safety managers' hazardous area identification is developed using automated data collection technology. These algorithms primarily search potential hazardous area by comparing workers' location logs based on real-time locating system and optimal routes based on BIM. And potential hazardous areas is filtered by identified hazardous areas and activity areas. After that, safety managers are provided with information about potential hazardous areas and can establish proper safety countermeasures. This can help improving safety in construction sites.

Hazard Analysis Process Based on STPA Using SysML (SysML을 이용한 STPA 기반의 위험원 분석 프로세스)

  • Choi, Na-yeon;Lee, Byong-gul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.1-11
    • /
    • 2019
  • Today's software systems are becoming larger and more complicated, and the risk of accidents and failures have also grown larger. Software failures and accidents in industrial fields such as automobiles, nuclear power plants, railroad industries, etc. may lead to severe damage of property and human life. The safety-related international standards, such as IEC 61508 have been established and applied to industries for decades. The safety life cycle specified in the standards emphasize the activities to develop safety requirements through hazard and risk analysis in the early stage of software development. In this paper, we propose 'Hazard Analysis Process based on STPA using SysML' in order to ensure the safety of software at the early stage of software development. The proposed hazard analysis can be effectively performed minimizing the loss of hazard by using the BDD and the IBD of SysML to define the control structure of a system. The proposed method also improves the specification of the safety constraints(requirement) by using SD. As a result, it is possible to identify the hazard without missing and identify the hazard scenarios in detail, and safety can be sufficiently ensured in the early stage of software development.

An Ontology-Based Hazard Analysis and Risk Assessment for automotive functional safety (자동차 기능안전성을 위한 온톨로지 기반의 위험원 분석 및 위험 평가)

  • Roh, Kyung-Hyun;Lee, Keum-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.9-17
    • /
    • 2015
  • The ISO 26262 standard requires a preliminary hazard analysis and risk assesment early in the development for automotive system. This is a first step for the development of an automotive system to determine the necessary safety measures to be implemented for a certain function. In this paper, we propose an ontology-based hazard analysis and risk assessment method for automotive functional safety. We use ontology to model the hazard and SWRL(Semantic Web Language) to describe risk analysis. The applicability of the proposed method is evaluated by the case study of an ESCL(electronic steering column lock) system. The result show that ontology deduction is useful for improving consistency and accuracy of hazard analysis and risk assessment.

Preliminary Hazard Analysis for Development of ICT-Based Local Control Center (ICT기반 지역제어센터 개발을 위한 예비위험원 분석)

  • Sung, Yu-Suk;Baek, Jong-Hyen;Kim, Gonyop;Kim, Youngju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1819-1827
    • /
    • 2015
  • ICT-based on-board oriented train control system has been proposed to improve operation efficiency in low-density railway line. It is also needed to develop a new ICT-based local control center which relates to existing centralized traffic control lines. In order to meet the qualitative target of these developing system, RAMS activities are required. In this paper, through preliminary hazard analysis, hazards and their contributing factors are addressed, then countermeasures are established to control the risk to an acceptable level.

Estimating Values of Statistical Lives using Choice Experiment Method (선택실험법을 이용한 확률적 인간생명가치의 추정)

  • Shin, Young Chul
    • Environmental and Resource Economics Review
    • /
    • v.16 no.3
    • /
    • pp.683-699
    • /
    • 2007
  • This study applied the choice experiment (CE) method to measure values of statistical lives from multi-attributed mortality risk reduction choices. The four characteristics of mortality risk (i.e. cause of death, voluntariness of mortality risk, timing of death, magnitude of mortality risk reduction) are utilized to design the alternatives of choice sets. The estimation results for the multinomial logit model show that individuals are willing to pay 27,930 won per year for a change from the status quo to a $\frac{1}{100}$ mortality risk reduction for 10 years, 116,773 won per year for mortality risk reduction associated with adults, 97,682 won per year for voluntary mortality risk reduction, 77,234 won per year for involuntary mortality risk reduction. There were several estimates of VSL related to different attributes of mortality risk. The mean VSLs of infant/child/young adult ranged from 1,165 million won to 1,367 million won. The mean VSLs ranged from 1,631 million won to 1,833 million won for adult, and were between 1,128 million won and 1,330 million won for old person.

  • PDF