• Title/Summary/Keyword: 유압실린더

Search Result 122, Processing Time 0.156 seconds

수문용 대형 유압실린더의 신뢰성평가기준개발

  • 김형의;정동수;이용범;이근호;강보식;윤소남;성백주;김도식;조정대
    • Proceedings of the Korean Reliability Society Conference
    • /
    • /
    • pp.75-86
    • /
    • 2000
  • 본 연구사례는 댐 수문용 대형유압실린더(Piston Diameter :630mm, Stroke:8.3m, weight :30ton, Retraction Force:450ton)의 신뢰성평가를 위한 검토과정에서 제기된 문제를 보완하여, 평가규격을 정립하고, 시험장비를 구축하여, 초대형 유압실린더의 신뢰성 평가를 실시한 사례에 대하여 정리한 것이다.

  • PDF

A Study on the Durability Design of a Hydraulic Cylinder for an Excavator (굴삭기 유압실린더의 내구설계 기법에 관한 연구)

  • Kim, Young-Bum;Kim, Pan-Young;Kim, In-Kyu;Kwon, Hak-Soon;Lee, Min-Hee;Park, Jin-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1901-1907
    • /
    • 2010
  • A hydraulic cylinder is a primary component of an excavator and is used for activating attachments such as boom, arm, and bucket. Generally, the cylinder is prone to structural problems such as buckling and fatigue failure caused by cyclic high pressure. Therefore, the safety margin for fatigue, yield, and buckling during the design lifetime should be evaluated at the durability-design stage. The durability design includes basic and detailed stages. In the basic design, the principal dimensions of the rod and tube are determined by considering the working force, speed, and range with respect to yield and buckling. In the detailed design, the dimensions of the rod notch, welds, tube end, gland, orifice, and cushion ring are determined by considering the fatigue safety. We present and discuss the overall procedure for durability design and the related analysis techniques.

Design of Capacitive Sensor for Measuring the Position of the Piston in Hydraulic Cylinder (유압 실린더 내 피스톤 위치측정을 위한 정전용량 센서 설계)

  • Lee, Soeng-hwi;Lee, Jae-gun;Kang, Yong-joo;Hong, Ic-pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.509-512
    • /
    • 2015
  • In this paper, several capacitive sensors for measuring the position of the piston in hydraulic cylinder was studied and designed. The inductive LVDT sensor has been widely used to measure the position of the piston because of its high accuracy, but this type of sensor is very expensive and has difficulty in use because of its complexity. To overcome these disadvantages, we studied the optimized non-contact capacitive sensors and designed several capacitive sensors for accurate measuring the location of piston in hydraulic cylinder. The proposed capacitive sensor has the possibility of practical use for hydraulic cylinder through experiments.

  • PDF

Design of the Sequentially Operated-Hydraulic Cylinders Type Sluice Gate Minimizing the Operating Force (작동력을 최소화시키는 순차작동-유압실린더식 수문의 설계)

  • Lee, Seong-Rae
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.893-898
    • /
    • 2004
  • The hydraulic cylinder is used for actuating a sluice gate which controls the volume of water in the reservoir. Generally, the one cylinder type is used to operate the sluice gate. In order to reduce the required cylinder force to operate the sluice gate significantly, the sequentially operated-hydraulic cylinders type is designed and the optimal locating points of cylinders are searched using the complex method that is one kind of constrained direct search method.

  • PDF

Trajectory Tracking Control of Hydraulic Cylinder Preventing from the Unbalance State (언밸런스 방지를 위한 유압실린더의 궤적 추종 제어)

  • Choi, Jong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.103-109
    • /
    • 2008
  • The work to raise the bridge plate by using two hydraulic cylinders is very dangerous when generating the unbalance state between cylinders. For solving this problem, one cylinder is forced to follow the trajectory of another cylinder instead of applying the same trajectory to two cylinders at once. In this paper, the control method for dynamic stable on lifting the bridge plate is proposed. The simulation model is derived by using commercial software, AMESim and MatLab/simulink. The PID controller is designed on one cylinder for following the reference trajectory and the adaptive controller is designed on another cylinder for tracking the displacement of one cylinder. The performance improvement is shown by comparing the simulation results through computer simulation.

  • PDF

Development of the Real-Time Simulator of a Turning-Type Sluice Gate Actuated by the Hydraulic Cylinder (유압실린더 구동식 전도 수문의 실시간 모의시험기 개발)

  • Lee, Seong-Rae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.192-198
    • /
    • 2006
  • The real-time simulator of a turning-type sluice gate actuated by the hydraulic cylinders is developed using a PC and a visual C++ program language. The real-time simulator receives the directional control valve signal selected by the operator using the mouse, updates the state variables of the turning-type sluice gate system responding to the control signal, and draws the moving figures of the sluice gate, cylinder, reserved water every drawing time on the PC monitor. Also, the operator can observe the sluice gate angle, cylinder force, cylinder pressures, and hydraulic power representing the operation of sluice gate system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the turning-type sluice gate system.

Design of Optimal Locating Points of the Hydraulic Cylinder Actuating a Sluice Gate Using the Complex Method (컴플렉스법에 의한 수문 유압실린더의 최적 설치점 설계)

  • Lee Seong-Rae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.170-176
    • /
    • 2005
  • The hydraulic cylinder is used for actuating the sluice gate which controls the volume of water in the reservoir. The locating points of hydraulic cylinder are restricted to limited space and determined to minimize the cylinder force necessary for actuating the sluice gate. Generally, the head end point of cylinder is fixed at underground and the rod end point of cylinder is connected to the gate plate when it is fully opened. Therefore there exist three parameters to be determined to minimize the cylinder force in the operation range of sluice gate. The optimal locating points of hydraulic cylinder are obtained using the complex method that is one kind of constrained direct search m method.

Force Synchronizing Control for 4 Axes Driven Hydraulic Cylinder-Clamping Load Systems (4축 구동 유압실린더-클램핑 부하 시스템의 힘 동기제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2014
  • This paper deals with the issue of force synchronizing control for the clamping servomechanism of injection molding machines. Prior to the controller design, a virtual design model has been developed for the clamping mechanism with hydraulic systems. Then, a synchronizing controller is designed and combined with an adaptive feedforward control in order to accommodate the mismatches between the real plant and the linear model plant used. As a disturbance, the leakage due to the ring gap with relative motion in the cylinder has been introduced. From the robust force tracking simulations, it is shown that a significant reduction in the force synchronizing error is achieved through the use of a proposed control scheme.

Control Characteristics of Fluid Power Cylinder Moving Up and Down (상하운동하는 유압실린더의 제어특성)

  • Yum, Man-Oh;Yoon, Il-Ro;Lee, Seok-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8
    • /
    • pp.1152-1158
    • /
    • 2004
  • In this study a MRAC(model reference adaptive control) for fluid power elevator model system was designed. The MRAC was compared with PI control in case of applying to the elevator model system with constant external load and changing external load. In this case external load was produced by a single fluid power cylinder combined with pressure control valve. In conclusion the MRAC control performance was better than PI control performance because overshoot and steady state error of the elevator model system controlled by the MRAC were not appeared for constant and changing external load.

Control Characteristics Improvement of Single Rod Hydraulic Cylinder Subjected to Varying Load (가변하중을 받는 유압실린더의 제어특성개선)

  • Yum, Man-Oh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • For position control of electro-hydraulic servo system, single rod cylinders and double rod cylinders are used. Single rod cylinders have simple structure for manufacturing but different volume ratio of two sides induce to non-linearity in process of then mathematical modeling. So only with conventional PID control method it is difficult to control single rod cylinders precisely. For mole precise position control of single rod cylinders, a controller which is inserted a velocity feedback PID controller and MRAC controller are proposed. With experiment control performances of three control methods are compared. In case of experiment, for external varying load to the system, a hydraulic cylinder and a pressure control valve are used. In conclusion a MRAC is considered a suitable control method for external varying load.

  • PDF