• Title, Summary, Keyword: 유체동역학

Search Result 219, Processing Time 0.048 seconds

Development of Simple Example of CFD Course in Mechanical Engineering Curriculum (I) (Laminar Pipe Flow) (기계공학교육과정에서의 전산유체동역학의 기초예제개발 (I) (수평 원관의 층류 유동))

  • Lee, Sung-Riong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.72-80
    • /
    • 2018
  • With the ever increasing advances in computers and their computing power, computational fluid dynamics(CFD) has become an essential engineering tool in the design and analysis of engineering applications. Accordingly, many universities have developed and implemented a course on CFD for undergraduate students. On the other hand, many professors have used industrial examples supplied by computational analysis software companies as CFD examples. This makes many students think of CFD as difficult and confusing. This paper presents a simple CFD example used in the department of mechanical design engineering of Kangwon National University and shows its effectiveness. Most students answered that a simple CFD example is more comprehensive than an industrial example. Therefore, it is necessary to develop simple computational analysis problems in the engineering education field.

Numerical Modeling of the Detonation of Explosives Using Hydrodynamics Codes (유체 동역학 코드를 이용한 화약의 폭발과정에 대한 수치 모델링)

  • Park, Dohyun;Choi, Byung-Hee
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.31-38
    • /
    • 2016
  • The hydrodynamics code is a numerical tool developed for modeling high velocity impacts where the materials are assumed to behave like fluids. The hydrodynamics code is widely used for solving impact problems, such as rock blasting using explosives. For a realistic simulation of rock blasting, it is necessary to model explosives numerically so that the interaction problem between rock and explosives can be solved in a fully coupled manner. The equation of state of explosives, which describes the state of the material under given physical conditions, should be established. In this paper, we introduced the hydrodynamics code used for explosion process modeling, the equation of state of explosives, and the determination of associated parameters.

동력학에 대한 교과과정

  • 염영일
    • Journal of the KSME
    • /
    • v.28 no.2
    • /
    • pp.150-155
    • /
    • 1988
  • 공학의 기본을 이루고 있는 Newton의 역할은 고체역학과 유체역학으로 분류가 되며 고체역학은 다시 정역학과 동역학으로 세분된다. 동역학은 가속의 운동을 가진 물체를 다루는 학문으로 다시 두 부분으로 나누어진다. 하나는 운동학(kinematics)이고 다른 하나는 운동역학(kinetics) 이다. 운동학은 운동자체 즉 속도, 가속도만을 취급하며 운동역학은 운동을 일으키는 힘과 그 결과로 생기는 운동을 연관짓는 학문이다.

  • PDF

Real-time Fluid Animation using Particle Dynamics Simulation and Pre-integrated Volume Rendering (입자 동역학 시뮬레이션과 선적분 볼륨 렌더링을 이용한 실시간 유체 애니메이션)

  • Lee Jeongjin;Kang Moon Koo;Kim Dongho;Shin Yeong Gil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.1
    • /
    • pp.29-38
    • /
    • 2005
  • The fluid animation procedure consists of physical simulation and visual rendering. In the physical simulation of fluids, the most frequently used practices are the numerical simulation of fluid particles using particle dynamics equations and the continuum analysis of flow via Wavier-Stokes equation. Particle dynamics method is fast in calculation, but the resulting fluid motion is conditionally unrealistic The method using Wavier-Stokes equation, on the contrary, yields lifelike fluid motion when properly conditioned, yet the complexity of calculation restrains this method from being used in real-time applications. Global illumination is generally successful in producing premium-Duality rendered images, but is also excessively slow for real-time applications. In this paper, we propose a rapid fluid animation method incorporating enhanced particle dynamics simulation method and pre-integrated volume rendering technique. The particle dynamics simulation of fluid flow was conducted in real-time using Lennard-Jones model, and the computation efficiency was enhanced such that a small number of particles can represent a significant volume. For real-time rendering, pre-integrated volume rendering method was used so that fewer slices than ever can construct seamless inter-laminar shades. The proposed method could successfully simulate and render the fluid motion in real time at an acceptable speed and visual quality.

Motion Performance Prediction and Experiments of an Autonomous Underwater Vehicle through Fluid Drag Force Calculations (유체항력 계산을 통한 자율무인잠수정의 운동성능 예측과 실험)

  • Kim, Chang Min;Baek, Woon Kyung
    • Journal of the Korean Society of Marine Engineering
    • /
    • v.39 no.6
    • /
    • pp.614-619
    • /
    • 2015
  • In this study, a dynamics model was developed to predict the motion performance of an Autonomous Underwater Vehicle (AUV). The dynamics model includes basic dynamic state variables of the hull and force terms to determine the motion of the AUV. The affecting terms for the forces are hydrostatic force, added mass, hydrodynamic damping, lift and drag forces. The force terms can be calculated using analytical and Computational Fluid Dynamics methods. For the underwater motion simulation, a simple PD controller was used. Also, the AUV was tested in a water tank and near sea for the partial verification of the fluid drag force coefficients and way-point tracking motions.