• Title, Summary, Keyword: 이동하중

Search Result 588, Processing Time 0.039 seconds

Development of Impact Factor Response Spectrum based on Frequency Response of Both Ends-Fixed Beam for Application to Continuous Bridges (연속교 적용을 위한 양단고정지지 보의 진동수 기반 충격계수 응답스펙트럼 개발)

  • Roh, Hwasung;Lee, Huseok;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.301-306
    • /
    • 2016
  • In bridge performance assessments, a new load carrying capacity evaluation model of simple bridges was proposed, which is based on the developed simple support impact factor spectrum. In this paper, a conservative assumption that the inner span with the both ends fixed boundary condition is ideal for applying the impact factor response spectrum for continuous bridges. The impact factor response spectrum has been proposed based on this assumption. The response spectrum by comparing the numerical analysis result and actual measurement data verified the applicability. The analysis was loading the moving load of DB-24 in a six-span continuous bridge, which was the same as the actual measurement data, the dynamic response was measured in the fourth span. The frequency of the bridge was obtained by FFT on the acceleration response and the span-frequency of sample bridge was calculated by the frequency. The impact factor of the sample bridge was determined by applying the span-frequency of the bridge to the proposed response spectrum; it was similar to the result of comparing the actual measured impact factor. Therefore, the method using the impact factor response spectrum based on the frequency response of both ends-fixed beam was found to be applicable to an actual continuous bridge.

Environmental Approach to Blasting Effect on the Surrounding Area when the Mine Blasting (광산 발파 시 인근지역에 미치는 발파영향에 대한 환경적 접근)

  • Jeong, Beonghun;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.5-12
    • /
    • 2015
  • Since blasting noise is impact noise, it will give a sudden shock to the human. In the case, such as the blast vibration, it has given aging buildings and livestock great damage to move the vibration along ground in nearby regions. In this study, the influence of the blasting generated during excavation was analyzed for effects on regional. A couple of field and laboratory surveys about geological were carried out to figure out the geological ratio in the study-performed area. Blast vibration noise was compared to the domestic and abroad case studies and each of the institutions permissible standards established the most appropriate criteria in site condition. The vibration velocity of blasting vibration exploits the values which were measured from test blasting on the ground in order to examine blasting effect. Considering the blasting point as the shortest distance from safety facilities (farms, private houses, etc.), the examination of the influence range, which was derived from the vibration velocity of blasting vibration, was performed to figure out how the point affected the safety facilities. Three-dimensional numerical analysis was performed a time history analysis in order to analyze the behavior of the structure for a dynamic blast load, which was determined in three directions of the blast vibration value. The results of three-dimensional numerical analysis and the blasting effect of blasting vibration estimation equation blasting vibration of impact circle with accompanying test blasting were compared. And the analysis confirmed similar results figures.

Study of lubrication and rheological properties of urea grease with respect to PTFE powder addition (PTFE 분말 첨가에 따른 우레아 그리스의 윤활 및 유변학 특성 연구)

  • Son, Kihun;Lee, Dongkyu;Lee, Youngseok;Woo, Jaegu;Ha, KiRyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.634-643
    • /
    • 2020
  • In this study, the rheological and tribological properties of urea grease were studied according to the type and amount of polytetrafluoroethylene (PTFE) powders added to the urea grease, which is the most widely used among solid lubricants, to develop an optimal lubrication system. Urea grease was synthesized using 4,4'-methylenebis(phenyl isocyanate)(MDI), oleylamine, and cyclohexylamine, and PTFE powders prepared by dispersion or suspension polymerization process were then added. The basic rheological and tribological properties of the prepared greases were compared. The worked penetration numbers of urea grease decreased with increasing amount of PTFE powders, but both PTFE powders caused no significant changes in heat resistance and copper corrosion resistance. The shear viscosity increased with increasing PTFE powder content, and the dispersion-type PTFE powder was more effective in increasing the viscosity. In the value of the loss coefficient = 1, the shear stress was higher for the grease containing PTFE powders than the non-PTFE added grease, and the dispersion-type PTFE-added grease showed higher viscosity than the suspension-type PTFE-added grease. Finally, urea grease was found to have a low-performance improvement in terms of wear reduction effects by adding PTFE powders, but the load-bearing performance was up to 2.5 times higher for the dispersion-type PTFE and five times higher for the suspension-type PTFE.

In situ stress estimation in KURT site (KURT 부지 암반 초기응력 특성 규명)

  • Jo, Yeonguk;Chang, Chandong;Park, Kyung-Woo;Ji, Sung-Hoon;Lee, Changsoo
    • Journal of the Geological Society of Korea
    • /
    • v.53 no.5
    • /
    • pp.689-701
    • /
    • 2017
  • We conducted hydraulic fracturing (HF) tests and borehole image logging, to investigate in situ stress state at KURT (Korea Atomic Energy Research Institute Underground Research Tunnel) site, Daejeon, Korea. The HF tensile fractures and drilling induced borehole wall failures, observed from borehole images, consistently indicated the E-W orienting maximum horizontal principal stress ($S_{Hmax}$). The magnitudes of the minimum horizontal principal stress ($S_{hmin}$) were determined using the pressure-time curves recorded during HF tests and those of $S_{Hmax}$ using the relationship between logged borehole wall failure and rock strength. The vertical stress ($S_v$), calculated from overburden weight of rocks, was either the minimum or the intermediate principal stress depending on depths. It indicates that the stress regime in KURT site is variable between thrust faulting ($S_v$ < $S_{hmin}$ < $S_{Hmax}$) and strike-slip faulting ($S_{hmin}$ < $S_v$ < $S_{Hmax}$) regimes. Our stress estimation results agree with the regional scale crustal stress pattern in Korean Peninsula reported from the previous studies.

Study on the Performance Verification of PRB Isolation Device using Simulation and Experiment (PRB 지진격리장치의 성능 검증을 위한 해석 및 실험적 연구)

  • Kim, Sung-Jo;Kim, Se-Yun;Ji, Yongsoo;Kim, Bongsik;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.311-318
    • /
    • 2020
  • This study introduces a technique for improving the elastomeric-isolator performance using modular devices. The modular devices are shear resistance block, polymer spring, displacement acceptance guide, and anti-falling block. They are installed on the elastomeric isolator as a supplementary device. Each modularized device improves the isolator performance by performing step-by-step actions according to the seismic intensity and displacement. The PRB isolation device works in four stages, depending on the seismic magnitude, to satisfy the target performance. It is designed to accommodate design displacement in the first stage and large magnitude of earthquakes in the second and third stages. This design prevents superstructures from falling in the fourth stage due to large-magnitude earthquakes by increasing the capacity limit of the elastomeric isolator. In this study, the PRB isolation device is analyzed using finite element analysis to verify that the PRB isolation device works as intended and it can withstand loads corresponding to large-magnitude earthquakes. The performance of the PRB isolation device is validated by the analysis, which is further corroborated by actual experiments.

Design and Full Size Flexural Test of Spliced I-type Prestressed Concrete Bridge Girders Having Holes in the Web (분절형 복부 중공 프리스트레스트 콘크리트 교량 거더의 설계 및 실물크기 휨 실험 분석)

  • Han, Man Yop;Choi, Sokhwan;Jeon, Yong-Sik
    • Journal of The Korean Society of Civil Engineers
    • /
    • v.31 no.3A
    • /
    • pp.235-249
    • /
    • 2011
  • A new form of I-type PSC bridge girder, which has hole in the web, is proposed in this paper. Three different concepts were combined and implemented in the design. First of all, a girder was precast at a manufacturing plant as divided pieces and assembled at the construction site using post-tensioning method, and the construction period at the site will be reduced dramatically. In this way, the quality of concrete can be assured at the manufacturing factory and concrete curing can be well controlled, and the spliced girder segments can be moved to the construction site without a transportation problem. Secondly, a numerous number of holes was made in the web of the girder. This reduces the self-weight of the girder. But more important thing related to the holes is that about half of the total anchorages can be moved from the girder ends into individual holes. The magnitude of negative moment developed at girder ends will be reduced. Also, since the longitudinal compressive stresses are reduced at ends, thick end diaphragm is not necessary. Thirdly, Prestressing force was introduced into the member through multiple stages. This concept of multi-stage prestressing method overcomes the prestressing force limit restrained by the allowable stresses at each loading stage, and maximizes the magnitude of applicable prestressing force. It makes the girder longer and shallower. Two 50 meter long full scale girders were fabricated and tested. One of them was non-spliced, or monolithic girder, made as one piece from the beginning, and the other one was assembled using post-tensioning method from five pieces of segments. It was found from the result that monolithic and spliced girder show similar load-deflection relationships and crack patterns. Girders satisfied specific girder design specification in flexural strength, deflection, and live load deflection control limit. Both spliced and monolithic holed web post-tensioned girders can be used to achieve span lengths of more than 50m with the girder height of 2 m.

Three-dimensional finite element analysis on intrusion of upper anterior teeth by three-piece base arch appliance according to alveolar bone loss (치조골 상실에 따른 three-piece base arch appliance를 이용한 상악전치부 intrusion에 대한 3차원 유한요소법적 연구)

  • Ha, Man-Hee;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.31 no.2
    • /
    • pp.209-223
    • /
    • 2001
  • At intrusion of upper anterior teeth in patient with periodontal defect, the use of three-piece base arch appliance for pure intrusion is required. To investigate the change of the center of resistance and of the distal traction force according to alveolar bone height at intrusion of upper anterior teeth using this appliance, three-dimensional finite element models of upper six anterior teeth, periodontal ligament and alveolar bone were constructed. At intrusion of upper anterior teeth by three-piece base arch appliance, the following conclusions were drawn to the locations of the center of resistance according to the number of teeth, the change of distal traction force for pure intrusion and the correlation to the change of vertical, horizontal location of the center of resistance according to alveolar bone loss. 1. When the axial inclination and alveolar bone height were normal, the anteroposterior locations of center of resistance of upper anterior teeth according to the number of teeth contained were as follows : 1) In 2 anterior teeth group, the center of located in the mesial 1/3 area of lateral incisor bracket. 2) In 4 anterior teeth group. the center of resistance was located in the distal 2/3 of the distance between the bracket of lateral incisor and canine. 3) In 6 anterior teeth group, the center of resistance was located in the central area of first premolar bracket .4) As the number of teeth contained in anterior teeth group increased, the center of resistance shifted to the distal side. 2. When the alveolar bone height was normal, the anteroposterior position of the point of application of the intrusive force was the same position or a bit forward position of the center of resistance at application of distal traction force for pure intrusion. 3. When intrusion force and the point of application of the intrusive force were fixed, the changes of distal traction force for pure intrusion according to alveolar bon loss were as follows :1) Regardless of the alveolar bone loss, the distal traction force of 2, 4 anterior teeth groups were lower than that of 6 anterior teeth group. 2) As the alveolar bone loss increased, the distal traction forces of each teeth group were increased. 4. The correlations of the vertical, horizontal locations of the center of resistance according to maxillary anterior teeth groups and the alveolar bone height were as follows : 1) In 2 anterior teeth group, the horizontal position displacement to the vortical position displacement of the center of resistance according to the alveolar bone loss was the largest. As the number of teeth increased, the horizontal position displacement to the vertical position displacement of the center of resistance according to the alveolar bone loss showed a tendency to decrease. 2) As the alveolar bone loss increased, the horizontal position displacement to the vertical position displacement of the center of resistance regardless of the number of teeth was increased.

  • PDF

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF