• Title, Summary, Keyword: 이미지 분류

Search Result 830, Processing Time 0.037 seconds

Design and Implementation of Hierarchical Image Classification System for Efficient Image Classification of Objects (효율적인 사물 이미지 분류를 위한 계층적 이미지 분류 체계의 설계 및 구현)

  • You, Taewoo;Kim, Yunuk;Jeong, Hamin;Yoo, Hyunsoo;Ahn, Yonghak
    • Convergence Security Journal
    • /
    • v.18 no.3
    • /
    • pp.53-59
    • /
    • 2018
  • In this paper, we propose a hierarchical image classification scheme for efficient object image classification. In the non-hierarchical image classification, which classifies the existing whole images at one time, it showed that objects with relatively similar shapes are not recognized efficiently. Therefore, in this paper, we introduce the image classification method in the hierarchical structure which attempts to classify object images hierarchically. Also, we introduce to the efficient class structure and algorithms considering the scalability that can occur when a deep learning image classification is applied to an actual system. Such a scheme makes it possible to classify images with a higher degree of confidence in object images having relatively similar shapes.

  • PDF

A Contents-Based Image Classification Using Neural Network (신경망을 이용한 내용 기반 이미지 분류)

  • 이재원;김상균
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • /
    • pp.177-180
    • /
    • 2001
  • 본 논문에서는 신경망을 이용한 내용 기반 이미지 분류 방법을 제안한다. 분류 대상이미지는 인터넷상의 다양한 이미지들 중 오브젝트 이미지이대 웹 에이전트를 통하여 획득하고 정규화 과정을 거친다. 획득한 이미지를 분류하기 위한 특징은 웨이블릿 변란 후 추출된 질감 특징이다. 추출된 질감 특징을 이용하여 학습패턴을 생성하고 신경망을 학습한다. 그리고 구성된 신경망 분류기로 이미지를 분류한다. 본 연구에서는 다양한 질감 특징들 중에서 대비(contrast), 에너지(energy), 엔트로피(entropy)를 이용하여 특징을 추출한다. 실험에 사용한 데이터는 30종류에 대하여 각각 10개씩, 300개의 이미지들을 학습 데이터, 테스트 데이터로 사용하여 구성된 분류기의 인식률을 실험하였다.

  • PDF

Cancer Histopathological Image Classification based on Convolutional Neural Network (CNN 기반 암세포 현미경 이미지 분류)

  • Kim, Shin;Yoon, Kyoungro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.46-48
    • /
    • 2018
  • 최근 수 년간 뉴럴 네트워크 기반 이미지 분류 기법의 성능이 눈에 띄게 향상되었다. 특히 CNN 은 딥 러닝기법을 도입하면서 이미지 분류 정확도가 향상되었으며, 이는 의학 분야 등 다른 분야에도 영향을 주게 되었다. 의학용 이미지의 분류 시스템의 경우, 오분류가 치명적인 결과를 초래할 수 있기 때문에 높은 정확도의 이미지 분류 시스템을 필요로 하게 된다. 본 논문에서는 CNN 기반 암세포 현미경 이미지 분류 기법에 대해 제안한다. 사전에 훈련된 뉴럴 네트워크의 가중치의 일부를 다시 계산하고, 재계산을 통해 얻은 가중치를 기반으로 암세포 현미경 이미지를 분류하며, 분류결과 높은 정확도로 이미지를 분류하는 것을 확인할 수 있다.

  • PDF

Web Image Classification using Semantically Related Tags and Image Content (의미적 연관태그와 이미지 내용정보를 이용한 웹 이미지 분류)

  • Cho, Soo-Sun
    • Journal of Internet Computing and Services
    • /
    • v.11 no.3
    • /
    • pp.15-24
    • /
    • 2010
  • In this paper, we propose an image classification which combines semantic relations of tags with contents of images to improve the satisfaction of image retrieval on application domains as huge image sharing sites. To make good use of image retrieval or classification algorithms on huge image sharing sites as Flickr, they are applicable to real tagged Web images. To classify the Web images by 'bag of visual word' based image content, our algorithm includes training the category model by utilizing the preliminary retrieved images with semantically related tags as training data and classifying the test images based on PLSA. In the experimental results on the Flickr Web images, the proposed method produced the better precision and recall rates than those from the existing method using tag information.

Design of Intelligeng Web Image Search Engine (지능적 웹 이미지 검색 엔진의 설계)

  • 박명선;이석호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.51-53
    • /
    • 1999
  • 기존의 웹 이미지 검색 엔진은 웹 이미지를 검색할 때 웹 이미지의 특징과, 웹 이미지를 포함한 HTML 문서의 텍스트를 이용한다. 그러나, 텍스트는 문맥에 따라 의미가 달라질 수 있으므로, 검색 대상을 미리 분류하면 검색 효율을 높일 수 있다. 본 논문은 웹 문서의 텍스트에서 이미지와 관련이 있는 이미지 설명 텍스트를 자동으로 추출하고, 검색 효율을 높이기 위하여 웹 이미지를 자동으로 분류하는 지능적 웹 이미지 검색 엔진을 제안한다. 지능적 웹 이미지 검색 엔진은 분류와 용어, 용어와 용어 사이의 연관도를 이용하여 분류의 정확도를 높인다.

  • PDF

Auto-Classification of Annotated Images using Similarity between Concepts (개념간 유사성을 이용한 이미지 자동분류)

  • Hwang, Kwang-Su;Yi, Hong-Ryoul;Kim, Pan-Koo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.370-375
    • /
    • 2007
  • 인터넷과 디지털기기의 발달로 인해 이미지 데이터가 기하급수적으로 증가함에 따라 이미지 데이터의 의미적인 자동분류를 위한 연구가 활발히 진행되고 있다. 기존의 이미지 분류방법은 내용기반 분류와 주석자에 의한 직접 분류 방법이 있다. 하지만 분류 기준이 명확하지 않고, 이미지가 내포하고 있는 정확한 의미 별로 분류가 이루어져 있지 않았다. 이에 본 논문에서는 이미지의 주석간 개념적인 관계를 분석하고 이미지에 의미를 대표할 수 있는 키워드를 추출하여 의미적이고 효율적인 분류 방법을 제안한다.

  • PDF

A Spatial Pyramid Matching LDA Model using Sparse Coding for Classification of Sports Scene Images (스포츠 이미지 분류를 위한 희소 부호화 기법을 이용한 공간 피라미드 매칭 LDA 모델)

  • Jeon, Jin;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.35-36
    • /
    • 2016
  • 본 논문에서는 기존 Bag-of-Visual words (BoW) 접근법에서 반영하지 못한 이미지의 공간 정보를 활용하기 위해서 Spatial Pyramid Matching (SPM) 기법을 Latent Dirichlet Allocation (LDA) 모델에 결합하여 이미지를 분류하는 모델을 제안한다. BoW 접근법은 이미지 패치를 시각적 단어로 변환하여 시각적 단어의 분포로 이미지를 표현하는 기법이며, 기존의 방식이 이미지 패치의 위치정보를 활용하지 못하는 점을 극복하기 위하여 SPM 기법을 도입하는 연구가 진행되어 왔다. 또한 이미지 패치를 정확하게 표현하기 위해서 벡터 양자화 대신 희소 부호화 기법을 이용하여 이미지 패치를 시각적 단어로 변환하였다. 제안하는 모델은 BoW 접근법을 기반으로 위치정보를 활용하는 SPM 을 LDA 모델에 적용하여 시각적 단어의 토픽을 추론함과 동시에 multi-class SVM 분류기를 이용하여 이미지를 분류한다. UIUC 스포츠 데이터를 이용하여 제안하는 모델의 분류 성능을 검증하였다.

  • PDF

Neural Network Based Image Genre Classification (Neural Network을 이용한 이미지 장르 분류 시스템)

  • Ahn, Jae-Hoon;Lee, Han-Ku;Ju, Hyun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.330-335
    • /
    • 2006
  • 본 논문에서는 neural network을 이용한 이미지 장르(유형) 분류 시스템을 소개한다. 이 논문에서 제안된 시스템은 이미지를 예술(art), 사진(photo), 만화(cartoon) 이미지라는 세 가지 장르(유형) 중 하나로 분류한다. 이미지의 특성은 표준 MPEG-7 visual descriptor를 사용하여 추출된 후, neural networks를 이용하여 학습된다. 시뮬레이션 결과는 제안된 시스템이 80% 이상의 이미지들을 정확한 장르(유형)로 분류하는 것을 보여준다.

  • PDF

Member Verification with Deep Learning-based Image Descriptors (깊은 인공 신경망 이미지 기술자를 활용하는 멤버 분류)

  • Jang, Young Kyun;Lee, Seok Hee;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.36-39
    • /
    • 2020
  • 최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 복잡한 특징을 담고 있는 얼굴 이미지에 대해 이를 적용하려는 시도가 늘어나고 있다. 특히, 이미지로부터 주요한 특징들을 추출하여 간결하게 이미지를 대표할 수 있는 이미지 기술자 (Image descriptor)를 딥 러닝을 통해 생성하는 연구가 인기를 끌고 있다. 이는 딥 러닝 끝 단에 있는 Fully-connected layer 의 출력으로 얻을 수 있으며 이미지의 의미론적 상관관계를 이용하여 학습된다. 구체적으로, 이미지 기술자는 실수형 벡터 데이터로서, 한 장의 이미지를 수치화 하여 비슷한 이미지 사이에는 벡터 거리가 가깝게, 서로 다른 이미지 사이에는 벡터 거리가 멀게 구성된다. 본 연구에서는 미리 학습된 인공 신경망을 통과시켜 얻은 얼굴 이미지 기술자를 활용하여 멤버 분류를 위한 두 개의 인공 신경망을 학습하는 것을 목표로 한다. 제안된 방법을 검증하기 위해 얼굴 인식에 널리 사용되는 벤치 마크 데이터셋을 활용하였고, 그 결과 제안된 방법이 높은 정확도로 멤버를 분류할 수 있다는 것을 확인하였다.

  • PDF

Convolutional Neural Network-based Malware Classification Method utilizing Local Feature-based Global Image (로컬 특징 기반 글로벌 이미지를 사용한 CNN 기반의 악성코드 분류 방법)

  • Jang, Sejun;Sung, Yunsick
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.222-223
    • /
    • 2020
  • 최근 악성코드로 인한 피해가 증가하고 있다. 악성코드는 악성코드가 속한 종류에 따라서 대응하는 방법도 다르기 때문에 악성코드를 종류별로 분류하는 연구도 중요하다. 기존에는 악성코드 시각화 과정을 통해서 생성된 악성코드의 글로벌 이미지를 사용해 악성코드를 각 종류별로 분류한다. 글로벌 이미지를 악성코드로부터 추출한 바이너리 정보를 사용해서 생성한다. 하지만, 글로벌 이미지만을 사용해서 악성코드를 각 종류별로 분류하는 경우 악성코드의 종류별로 중요한 특징을 고려하기 않기 때문에 분류 정확도가 떨어진다. 본 논문에서는 악성코드의 글로벌 이미지에 악성코드의 종류별 특징을 나타내기 위한 로컬 특징 기반 글로벌 이미지를 사용한 악성코드 분류 방법을 제안한다. 첫 번째, 악성 코드로부터 바이너리를 추출하고 추출된 바이너리를 사용해서 글로벌 이미지를 생성한다. 두 번째, 악성 코드로부터 로컬 특징을 추출하고 악성코드의 종류별 핵심 로컬 특징을 단어-역문서 빈도(Term Frequency Inverse Document Frequency, TFIDF) 알고리즘을 사용해 선택한다. 세 번째, 생성된 글로벌 이미지에 악성코드의 패밀리별 핵심 특징을 픽셀화해서 적용한다. 네 번째, 생성된 로컬 특징 기반 글로벌 이미지를 사용해서 컨볼루션 모델을 학습하고, 학습된 컨볼루션 모델을 사용해서 악성코드를 각 종류별로 분류한다.