• Title, Summary, Keyword: 인공신경망

Search Result 1,466, Processing Time 0.045 seconds

Prediction of Lateral Deflection and Maximum Bending Moment of Model Piles Using Artificial Neural Network (인공 신경망을 이용한 모형말뚝의 수평변위와 최대 휨모멘트 예측)

  • 김병탁;김영수;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.169-178
    • /
    • 2000
  • 본 논문에서는 단일 및 군말뚝의 수평변위와 최대 휨모멘트를 예측하기 위하여 인공신경망을 도입하였다. 인공신경망에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였다. 인공신경망 중의 하나인 오류 역전파 신경망(EBIPNN)의 적용성 검증을 위하여 600개의 모형실험결과들을 이용하였다. 그리고 신경망의 구조는 한개의 입력층과 두개의 은닉층 그리고 한개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학슴에 이용하지 않은 데이터들은 예측에 이용되었다. 인공신경망 학습결과와 실험결과의 비교에 의하면, 신경망의 최적학습을 위하여 최적학습을 위하여 적합한 은닉층의 뉴런수는 각각 30개로 그리고 학습률은 0.9로 결정되었다. 전체 데이터의 50%이상으로 학습을 수행한 신경망의 모델은 정확한 예측을 하는 것으로 나타났다. 따라서, 인공신경망 모델리 수평하중을 받는 말뚝의 수평변위와 최대 휨모멘트의 예측에 적용될 수 있는 가능성을 보여주었다.

  • PDF

인공신경망을 이용한 화학공정 제어

  • 김석준;박선원
    • ICROS
    • /
    • v.2 no.1
    • /
    • pp.48-58
    • /
    • 1996
  • 본 논문에서는 화학공정 제어분야에서 수행된 인공신경망을 이용한 연구에 대하여 정리하였다. 본 논문의 구성은 먼저 인공신경망의 일반적인 특성에 대하여 개괄적으로 알아보았고, 인공신경망을 모델링과 제어에 사용한 연구들을 체계적으로 정리하였다. 또한 마지마긍로 화학공정에 적용된 사례를 소개하고, 화학공정에 인공신경망을 사용하는 경우에 댜하여 문제점과 특성을 논의하였다.

  • PDF

Weak-linked Neurons Elimination Method based Neural Network Models for Bankruptcy Prediction (약체연결뉴런 제거법에 의한 부도예측용 인공신경망 모형에 관한 연구)

  • 손동우;이웅규
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • /
    • pp.115-121
    • /
    • 2000
  • 본 연구는 인공신경망 모형에서 최적 입력 변수를 선정하기 위하여 새로운 선처리 기법인 약체연결뉴런 제거법을 제안하고 그 예측력의 우월성을 순수 인공신경망과 의사결정트리로 선처리한 인공신경망 모델과 각각 비교했으며, 그 결과를 보면 본 연구에서 제안하고 있는 약체연결뉴런 제거법에 의해 입력변수 선정과정을 거친 모델의 성과가 순수 인공신경망이나 의사결정트리로 선처리한 인공신경망 모델에 비해 예측적중율이 우수한 것으로 나타났다.

  • PDF

한글 단어를 발음 기호로 변환 시키는 인공신경망에 관한 연구

  • Yang, Jae-U;Kim, Doo-Hyeon
    • ETRI Journal
    • /
    • v.10 no.3
    • /
    • pp.113-124
    • /
    • 1988
  • 본 논문에서는 한글 단어를 발음 기호로 변환시키는 인공신경망의 설계와 이를 시뮬레이션한 결과에 대하여 논한다. 이 인공신경망은 multi-layer perceptron 구조를 가지며 error back-propagation 학습 알고리즘을 사용하였다. 이 인공신경망에 한글 발음 사전의 일부를 반복적으로 제시하여 학습시킨 결과, 학습한 단어에 대하여 최고 97%의 정확도로 변환 작업을 수행하였고 학습하지 않은 단어에 대해서는 91%의 정확도를 보였다. 이는 설계된 인공신경망이 발음 사전 내에 포괄적으로 내재되어 있는 발음규칙을 스스로 학습하였음을 나타낸다. 아울러 신경망의 학습 성취도와 입력 코드와의 관계도 연구하였는데, 한글단어를 발음기호로 변환하는 데에 있어서 compact 코드 보다 local 코드일 때 학습 성취도가 높은 것이 실험을 통해 밝혀졌다.

  • PDF

Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models (인공신경망을 이용한 항공기 기내식 수요예측의 예측력 개선 방안에 관한 연구)

  • Lee, Young-Chan;Seo, Chang-Gab
    • The Journal of Information Systems
    • /
    • v.10 no.2
    • /
    • pp.151-164
    • /
    • 2001
  • 현재의 항공사 기내식 수요예측 시스템으로는 항공기 운항의 지연이나 초과 주문으로 인한 손실 문제를 해결하기 힘든 것으로 알려져 있다. 이러한 문제를 해결하기 위해 본 연구에서는 항공기 기내식 시계열 자료만을 입력변수로 사용한 단순인공신경망모형(simple neural network model), 단순인공신경망모형에 전통적인 시계열 기법(본 연구에서는 지수 평활법)의 예측 결과를 입력변수로 추가한 혼합인공신경망모형(hybrid neural network model), 그리고 혼합인공신경 망 모형에 상관관계가 높은 다른 시계열 자료(본 논문에서는 유사 노선의 다른 항공기 기내식 시계열 자료)를 인공신경망의 입력변수로 추가시킨 하이퍼혼합인공신경망모형(hyper hybrid neural network model)을 새로운 항공기 기내식 수요예측 기법으로 제안하고, 이들 모형의 예측력을 비교 분석하였다. 분석 결과 하이퍼혼합인공신경망 모형의 예측력이 가장 우수한 것으로 나타나, 인공신경 망을 기반으로 한 수요예측에 있어 상관관계가 높은 다른 시계열 자료를 입력변수로 추가함으로써 인공신경망모형의 예측력을 개선시킬 수 있음을 알 수 있었다

  • PDF

Comparison Between Hidden Layers of Neural Networks and Topics for Hidden Layer Comprehension (인공신경망 은닉층 해석을 위한 토픽과의 비교)

  • Jeong, Young-Seob
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.910-913
    • /
    • 2017
  • 데이터의 양이 증가하면서 인공신경망을 통한 데이터 분석 기술이 주목받고 있으며, 텍스트, 그림, 동영상 등에 이르기까지 다양한 종류의 데이터를 자동으로 분석하여, 번역기, 채팅봇, 그림 캡션 자동 생성 등에 대한 연구 및 서비스 개발에 활용되고 있다. 인공신경망 기반으로 수행된 많은 연구들이 공통적으로 가진 한계가 있는데, 그것은 은닉층에 대한 해석이 어렵다는 것이다. 가령, 입력층, 은닉층, 그리고 결과층으로 이루어진 인공신경망을 임의의 데이터로 학습시키면, 입력층과 은닝층 사이에 존재하는 행렬은 해당 데이터에 존재하는 패턴 정보를 내포하게 된다. 따라서, 행렬에 존재하는 패턴 정보를 직접 분석할 수 있다면, 인공신경망 결과물에 대한 해석이 가능할 뿐만 아니라 성능을 높이기 위해 어떤 조정이 필요한지에 대한 직관도 얻을 수 있을 것이다. 하지만, 이 행렬의 실체는 숫자로 이루어진 벡터이므로 사람이 직접 해석하는 것은 불가능하며, 지금까지 수행되어온 대부분의 인공신경망 연구들은 공통적으로 이러한 한계점을 가지고 있다. 본 연구는 데이터에 존재하는 패턴을 잡아내면서도 해석이 가능한 토픽 모델과 인공신경망의 결과물을 비교함으로써, 인공신경망 은닉층 해석에 대한 실마리를 찾기 위한 연구이다. 실험을 통해 토픽과 은닉층 패턴의 유사성을 검증하고, 향후 인공신경망 연구에서 은닉층에 대한 가능성을 논한다.

A Study on the Two-Phased Hybrid Neural Network Approach to an Effective Decision-Making (효과적인 의사결정을 위한 2단계 하이브리드 인공신경망 접근방법에 관한 연구)

  • Lee, Geon-Chang
    • Asia pacific journal of information systems
    • /
    • v.5 no.1
    • /
    • pp.36-51
    • /
    • 1995
  • 본 논문에서는 비구조적인 의사결정문제를 효과적으로 해결하기 위하여 감독학습 인공신경망 모형과 비감독학습 인공신경망 모형을 결합한 하이브리드 인공신경망 모형인 HYNEN(HYbrid NEural Network) 모형을 제안한다. HYNEN모형은 주어진 자료를 클러스터화 하는 CNN(Clustering Neural Network)과 최종적인 출력을 제공하는 ONN(Output Neural Network)의 2단계로 구성되어 있다. 먼저 CNN에서는 주어진 자료로부터 적정한 퍼지규칙을 찾기 위하여 클러스터를 구성한다. 그리고 이러한 클러스터를 지식베이스로하여 ONN에서 최종적인 의사결정을 한다. CNN에서는 SOFM(Self Organizing Feature Map)과 LVQ(Learning Vector Quantization)를 클러스터를 만든 후 역전파학습 인공신경망 모형으로 이를 학습한다. ONN에서는 역전파학습 인공신경망 모형을 이용하여 각 클러스터의 내용을 학습한다. 제안된 HYNEN 모형을 우리나라 기업의 도산자료에 적용하여 그 결과를 다변량 판별분석법(MDA:Multivariate Discriminant Analysis)과 ACLS(Analog Concept Learning System) 퍼지 ARTMAP 그리고 기존의 역전파학습 인공신경망에 의한 실험결과와 비교하였다.

  • PDF

Training Artificial Neural Networks and Convolutional Neural Networks using WFSO Algorithm (WFSO 알고리즘을 이용한 인공 신경망과 합성곱 신경망의 학습)

  • Jang, Hyun-Woo;Jung, Sung Hoon
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.969-976
    • /
    • 2017
  • This paper proposes the learning method of an artificial neural network and a convolutional neural network using the WFSO algorithm developed as an optimization algorithm. Since the optimization algorithm searches based on a number of candidate solutions, it has a drawback in that it is generally slow, but it rarely falls into the local optimal solution and it is easy to parallelize. In addition, the artificial neural networks with non-differentiable activation functions can be trained and the structure and weights can be optimized at the same time. In this paper, we describe how to apply WFSO algorithm to artificial neural network learning and compare its performances with error back-propagation algorithm in multilayer artificial neural networks and convolutional neural networks.

Mutual Information Technique for Selecting Input Variables of RDAPS (RDAPS 입력자료 선정을 위한 Mutual Information기법 적용)

  • Han, Kwang-Hee;Ryu, Yong-Jun;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.1141-1144
    • /
    • 2009
  • 인공신경망(artificial neural network) 기법은 인간의 두뇌 신경세포의 활동을 모형화한 것으로 오랜 시간동안 발전해 왔으며 여러 분야에서 활용되고 있고 수문분야에서도 인공신경망을 이용한 연구가 활발히 진행되어 왔다. RDAPS와 같은 단기수치예보 자료는 강우의 유무 판단과 같은 정성적인 분석에서 비교적 정확도가 높지만 정확한 강우량의 추정과 같은 정량적인 부분에서는 정확도가 매우 낮으므로 인공신경망 기법과 같은 후처리 기법을 통해서 정확도를 높이게 된다. 인공신경망 기법을 수행할 때, 가장 중요한 것은 입력변수선택(input variable selection)으로 입력 변수의 적절한 선택이 결과값에 큰 영향을 주게 된다. 본 연구에서는 mutual information을 입력 변수 선택 기법으로 채택하여, 인공신경망의 입력변수 선정의 정확도를 알아보고자 한다. Mutual information은 주어진 자료의 엔트로피값을 이용하여 변수들 간의 독립과 종속의 관계를 나타내는 기법으로서, MI값은 '0'에서 '1'의 값을 가지며 '0'에 가까울수록 변수들 간의 관계가 독립적이고 '1'에 가까울수록 종속적인 관계를 나타낸다. 인공신경망의 입력변수선정에 대한 mutual information의 정확도를 알아보기 위해, 기존 입력변수선택 기법과 mutual information을 이용했을 경우의 인공신경망의 처리능력, 정확도를 비교 검토하였다.

  • PDF

Learning of Artificial Neural Networks about the Prosody of Korean Sentences. (인공 신경망의 한국어 운율 학습)

  • Shin Dong-Yup;Min Kyung-Joong;Lim Un-Cheon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.121-124
    • /
    • 2001
  • 음성 합성기의 합성음의 자연감을 높이기 위해 자연음에 내재하는 정확한 운율 법칙을 구하여 음성합성 시스템에서 이를 구현해 주어야 한다 무제한 어휘 음성합성 시스템의 문-음성 합성기에서 필요한 운율 법칙은 언어학적 정보를 이용해 구하거나, 자연음에서 추출하고 있다 그러나 추출한 운율 법칙이 자연음에 내재하는 모든 운율 법칙을 반영하지 못했거나, 잘못 구현되는 경우에는 합성음의 자연성이 떨어지게 된다. 이런 점을 고려하여 본 논문에서는 한국어 자연음을 분석하여 추출한 운율 정보를 인공 신경망이 학습하도록 하고 훈련을 마친 인공 신경망에 문장을 입력하고, 출력으로 나오는 운율 정보와 자연음의 운율 정보를 비교한 결과 제안한 인공 신경망이 자연음에 내재하고 있는 운율을 학습할 수 있음을 알 수 있었다. 운율의 3대 요소는 피치 , 지속시간, 크기의 변화이다. 제안한 인공 신경망이 한국어 문장의 음소 열을 입력으로 받아들이고, 각 음소의 지속시간에 따른 피치변화와 크기 변화를 출력으로 내보내면 자연음을 분석해 구한 각 음소의 운율 정보인 목표 패턴과 출력 패턴 의 오차를 최소화하도록 인공 신경망의 가중치를 조절할 수 있도록 설계하였다. 지속시간에 따른 각 음소의 피치와 크기 변화를 학습시키기 위해 피치 및 크기 인공 신경망을 구성하였다. 이들 인공 신경망을 훈련시키기 위해 먼저 음소 균형 문장 군을 구축하여야 하고, 이들 언어 자료를 특정 화자가 일정 환경에서 읽고 이를 녹음하여 , 분석하여 구한운율 정보를 운율 데이터베이스로 구축하였다. 문장 내의 각 음소에 대해 지속 시간과 피치 변화 그리고 크기 변화를 구하고, 곡선 적응 방법을 이용하여 각 변화 곡선에 대한 다항식 계수와 초기 값을 구해 운율 데이터베이스를 구축한다. 이 운율 데이터베이스의 일부는 인공 신경망을 훈련시키는데 이용하고, 나머지로 인공 신경망의 성능을 평가하여 인공 신경망이 운율 법칙을 학습할 수 있었다. 언어 자료의 문장 수를 늘리고 발음 횟수를 늘려 운율 데이터베이스를 확장하면 인공 신경망의 성능을 높일 수 있고, 문장 내의 음소의 수를 감안하여 인공 신경망의 입력 단자의 수는 계산량과 초분절 요인을 감안하여 결정해야 할 것이다

  • PDF