• Title, Summary, Keyword: 인과관계

Search Result 1,912, Processing Time 0.048 seconds

Deep Learning Based Causal Relation Extraction with Expansion of Training Data (학습 데이터 확장을 통한 딥러닝 기반 인과관계 추출 모델)

  • Lee, Seungwook;Yu, Hongyeon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.61-66
    • /
    • 2018
  • 인과관계 추출이란 어떠한 문장에서 인과관계가 존재하는지, 인과관계가 존재한다면 원인과 결과의 위치까지 분석하는 것을 말한다. 하지만 인과관계 관련 연구는 그 수가 적기 때문에 말뭉치의 수 또한 적으며, 기존의 말뭉치가 존재하더라도 인과관계의 특성상 새로운 도메인에 적용할 때마다 데이터를 다시 구축해야 하는 문제가 있다. 따라서 본 논문에서는 도메인 특화에 따른 데이터 구축비용 문제를 최소화하면서 새로운 도메인에서 인과관계 모델을 잘 구축할 수 있는 통계 기반 모델을 이용한 인과관계 데이터 확장 방법과 도메인에 특화되지 않은 일반적인 언어자질과 인과관계에 특화된 자질을 심층 학습 기반 모델에 적용함으로써 성능 향상을 보인다.

  • PDF

Causal Relation Extraction Using Cue Phrases and Lexical Pair Probabilities (단서 구문과 어휘 쌍 확률을 이용한 인과관계 추출)

  • Chang, Du-Seong;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.163-169
    • /
    • 2003
  • 현재의 질의응답 시스템은 TREC(Text Retrieval Conference) 질의집합에 대해 최대 80% 정도의 응답 성공률을 보이고 있다. 하지만 질의 유형에 다라 성능의 많은 차이가 있으며, 인과관계에 대한 질의에 대해서는 매우 낮은 응답 성공률을 보이고 있다. 본 연구는 인접한 두 문장 혹은 두 문장 혹은 두 명사구 사이에 존재하는 인과관계를 추출하고자 한다. 기존의 명사구 간 인과관계 추출 연구에서는 인과관계 단서구문과 두 명사구의 의미를 주요한 정보로 사용하였으나, 사전 미등록어가 사용되었을 때 올바른 선택을 하기 어려웠다. 또한, 학습 코퍼스에 대한 인과관계 부착과정이 선행되어야 하며, 다량의 학습자료를 사용하기가 어려웠다. 본 연구에서는 인과관계 명사구 쌍에서 추출된 어휘 쌍을 기존의 단서구문과 같이 사용하는 방법을 제안한다. 인과관계 분류를 위해 나이브 베이즈 분류기를 사용하였으며, 비지도식 학습과정을 사용하였다. 제안된 분류 모델은 기존의 분류 모델과 달리 사전 미등록어에 의한 성능 저하가 없으며, 학습 코퍼스의 인과관계 분류 작업이 선행될 필요 없다. 문장 내 명사구간의 인과관계 추출 실험 결과 79.07%의 정확도를 얻었다. 이러한 결과는 단서구문과 명사구 의미를 이용한 방법에 비해 6.32% 향상된 결과이며, 지도식 학습방식을 통해 얻은 방법과 유사한 결과이다. 또한 제안된 학습 및 분류 모델은 문장간의 인과관계 추출에도 적용가능하며, 한국어에서 인접한 두 문장간의 인과관계 추출 실험에서 74.68%의 정확도를 보였다.

  • PDF

Fuzzy Cognitive Map-Based A, pp.oach to Causal Knowledge Base Construction and Bi-Directional Inference Method -A, pp.ications to Stock Market Analysis- (퍼지인식도에 기초한 인과관계 지식베이스 구축과 양방향 추론방식에 관한 연구 -주식시장 분석에의 적용을 중심으로-)

  • 이건창;주석진;김현수
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.1-22
    • /
    • 1995
  • 본 연구에서 퍼지인식도(Fuzzy Cognitive Map) 개념을 기초로 하여 (1) 특정 문제영역에 대한 전문가의 인과관계 지식(causal knowledge)을 추출하는 알고리즘을 제시하고, (2) 이 알고리즘에 기초하여 작성된 해당 문제영역에 대한 여러 전문가들의 인과관계 지식을 계층별로 분해하여, (3) 해당 계층간의 양방향 추론이 가능한 추론메카니즘을 제시하고자 한다. 특정 문제영역에 있어서의 인과관계 지식이란 해당 문제를 구성하는 여러 개념간에 존재하는 인과관계를 표현한 지식을 의미한다. 이러한 인과관계 지식은 기존의 IF-THEN 형태의 규칙과는 달리 행렬형태로 표현되기 때문에 수학적인 연산이 가능하다. 특정 문제영역에 대한 전문가의 인과관계 지식을 추출하는 알고리즘은 집합연산에 의거하여 개발되었으며, 특히 상반된 의견을 보이는 전문가들의 의견을 통합하여 하나의 통합된 인과관계 지식베이스를 구축하는데 유용하다. 그러나, 주어진 문제가 복잡하여 다양한 개념들이 수반되면, 자연히 인과관계 지식베이스의 규모도 커지게 되므로 이를 다루는데 비효율성이 개재되기 마련이다. 따라서 이러한 비효율성을 해소하기 위하여 주어진 문제를 여러계측(Hierarchy)으로 분해하여, 해당 계층별로 인과관계 지식베이스를 구축하고 각 계층별 인과관계 지식베이스를 연결하여 추론하는 메카니즘을 개발하면 효과적인 추론이 가능하다. 이러한 계층별 분해는 행렬의 분해와 같은 개념으로도 이해될 수 있다는 특징이 있어 그 연산이 간단명료하다는 장점이 있다. 이와같이 분해된 인과관계 지식베이스는 계층간의 추론메카니즘을 통하여 서로 연결된다. 이를 위하여 본 연구에서는 상향 또는 하향방식이 추론이 가능한 양방향 추론방식을 제시하여 주식시장에서의 투자분석 문제에 적용하여 그 효율성을 검증하였다.

  • PDF

Quantile causality from dollar exchange rate to international oil price (원유가격에 대한 환율의 인과관계 : 비모수 분위수검정 접근)

  • Jeong, Kiho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.361-369
    • /
    • 2017
  • This paper analyzes the causal relationship between dollar exchange rate and international oil price. Although large literature on the relationship has accumulated, results are not unique but diversified. Based on the idea that such diversified results may be due to different causality at different economic status, we considers an approach to test the causal relationship at each quantile. This approach is different from the mean causality analysis widely employed by the existing literature of the causal relationship. In this paper, monthly data from May 1987 to 2013 is used for the causal analysis in which Brent oil price and Major Currencies Dollar Index (MCDI) are considered. The test method is the nonparametric test for causality in quantile suggested by Jeong et al. (2012). The results show that although dollar exchange rate causes oil price in mean, the causal relationship does not exist at most quantiles.

An Improved Fuzzy Cognitive Map with Fuzzy Causal Relationships and Fuzzy Partially Causal Realtionships (퍼지 인과관계와 퍼지 부분인과관계를 적용한 개선된 퍼지 인식도(Fuzzy Cognitive Map)에 관한 연구)

  • 김현수;이건창
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.33-55
    • /
    • 1995
  • 포지인식도(Fuzzy Cognitive Map : FCM)는 추상적이고 비구조적이며 동적인 응용영역에서 전문가의 인과관계 지식(causal knowledge)을 표현하는데 매우 유용한 도구이다. FCM이 기존의 다른 네트워크 형태의 지식표현방법과 다른 차이점은 대상 문제의 개념변수들을 퍼지집합으로 묘사하고, 개념 변수간의 관계를 퍼지 인과관계로 다룬다는 것이다. 그런데 FCM의 특성이 아직 충분히 논의되지 않은 상태에서는 FCM의 적용에 있어 오류가 일어날 수 있다. 본 논문의 목적은 첫째, FCM의 특성과 의미를 보다 명확히 하여 이론적인 측면을 보강하고자 한다. 이를 위해 논리적관계(implication)와는 다른 인과관계의 정의를 다시 확인하고, 이정의에 기초한 퍼지 인과관계의 특성을 파악하고, 퍼지 인과관계와 대비되는 퍼지 부분인과관계 및 단방향 개념변수를 새로이 정의함으로써 FCM구축에 있어 잘못된 이해가 없게 하며, 둘째, FCM에서는 추론 방식이 갖추어야 할 원칙을 명시하고 이에 따라 이러한 원칙을 준수하는 새로운 추론 방식을 제시한다.

  • PDF

인과의 두 수준에 대한 결정론적 인과의 해명과 그것의 한계

  • Kim, Jun-Seong
    • Korean Journal of Logic
    • /
    • v.12 no.1
    • /
    • pp.45-87
    • /
    • 2009
  • 이 글에서 필자는 결정론적 인과를 토대로 속성 수준의 인과와 사건 수준의 인과의 연관성을 주장하는 하우스만(Hausman 1998)의 이론을 비판하고 두 수준의 인과의 관계를 바르게 이해하는 데 무엇이 필요한지를 제시한다. 하우스만은 결정론과 배경 조건의 다양성을 토대로 그리고 비결정적 상황에서는 확률에 대한 결정론적 인과를 토대로, 속성 수준의 인과는 사건 수준의 인과에서 도출된다는 의미에서 속성 수준의 인과는 사건 수준의 인과의 일반화라고 주장한다. 필자는 그 관계에 대한 문제를 제기하고 이 문제는 사건 수준의 인과에 본질적인 인과 연결을 주목하지 않은 채 변수들 간의 의존 관계만으로 두 수준의 인과의 관계를 단순히 해명하는 데에 있다고 지적한다. 필자는 두 수준의 인과의 관계는 단순히 한 가지 관점이나 방식으로 파악될 수 없고 해명, 설명, 예측 둥 다양한 관점에서 복합적으로 파악되어야 한다고 주장한다. 특히 사건 수준의 인과는 속성 수준의 인과에 개념적으로 의존하는 관계를 주목한다.

  • PDF

인과네트워크 기반의 재난 확산 모형에 관한 연구 동향과 사례 연구: 대구 지하철 화재를 중심으로

  • Lee, Jae-Hun;Kim, Gyeong-Deok;Hong, Ha-Na;Jo, Yong-Rae;Jo, Hyeon-Bo
    • Information and Communications Magazine
    • /
    • v.29 no.5
    • /
    • pp.42-49
    • /
    • 2012
  • 인과네트워크는 변수 간의 인과관계를 통해 현상을 이해하고 설명하는 체계이다. 이 네트워크는 이학 및 공학, 의학, 사회과학 등 여러 학문 분야에서 원인 변수와 결과 변수 간의 관계를 나타내어, 발생 가능한 현상의 원인을 예측하고, 그 결과를 설명하는데 사용되고 있다. 이를 다이어그램 형태로 표현하면 변수 간의 인과관계를 쉽게 입증할수도 있다. 특정 재난은 다양한 변수가 인과관계로 서로 연관되어 있기 때문에 인과네트워크의 적용이 가능한 분야이다. 따라서 이 네트워크는 재난 변수 간의 인과관계를 규명하여 재난의 확산 반응을 분석하고, 대응 시스템을 설계하는데 도움을 줄 수 있다. 실제로 지진, 정전, 테러, 화재 등의 인과관계를 규명하기 위한 재난 확산 모형에 대한 연구가 활발히 이루어지고 있다. 2003년 대구에서 일어난 지하철 화재는 여러 변수가 복합적으로 작용하여 일어난 재난이다. 또한 재난에 대응하는 인간 행동 및 인지 요인이 중요한 변수로 작용하였다. 따라서 이를 반영한 재난 확산 모형을 적용하여 실제 재난 상황을 재구성해 보고자 한다. 본 논문에서는 인과네트워크의 정의와 인과네트워크를 표현하는 4개의 방법론을 선별하여 각각의 특성을 살펴본다. 또한 이를 재난 분야에 적용한 인과네트워크 기반의 재난 확산 모형에 대한 연구 동향을 살펴본다. 마지막으로 2003년 대구 지하철 화재를 사례로 하여 재난의 확산과 대응체계의 인과관계에 대해 연구하였다. 이 때 인간 행동과 인지 분석 결과를 토대로 심층적인 접근을 시도해 보았다. 이를 통해 재난의 인과관계와 근본적 대응방안의 가능성을 타진해 보았다.

Definition and Extraction of Causal Relations for Question-Answering on Fault-Diagnosis of Electronic Devices (전자장비 고장진단 질의응답을 위한 인과관계 정의 및 추출)

  • Lee, Sheen-Mok;Shin, Ji-Ae
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.5
    • /
    • pp.335-346
    • /
    • 2008
  • Causal relations in ontology should be defined based on the inference types necessary to solve problems specific to application as well as domain. In this paper, we present a model to define and extract causal relations for application ontology for Question-Answering (QA) on fault-diagnosis of electronic devices. Causal categories are defined by analyzing generic patterns of QA application; the relations between concepts in the corpus belonging to the causal categories are defined as causal relations. Instances of casual relations are extracted using lexical patterns in the concept definitions of domain, and extended incrementally with information from thesaurus. On the evaluation by domain specialists, our model shows precision of 92.3% in classification of relations and precision of 80.7% in identifying causal relations at the extraction phase.

Product Liability and Causation in Criminal Law (형법상 제조물책임과 인과관계의 확정)

  • Lee, Seok-Bae
    • The Korean Society of Law and Medicine
    • /
    • v.17 no.2
    • /
    • pp.3-28
    • /
    • 2016
  • While product liability has been settled as a technical term in civil law, criminal law does not commonly accept technical term for it. Not like civil law, product liability in criminal law point outs individual responsibility and disability of normative order. Meaning that causation between individual's action of violation of duty and the result of danger of legal interest or infringement of legal interest must be proved. In criminal law excluding "non-result-constituted crimes (Unternehmensdelikt)", charge of injuring, accidental infliction of injury, homicide or involuntary manslaughter is problematic in product liability. Of course, it is necessary to distinguish whether the action related to the outcome is act or ommission. Also the causal relationship between the action and the result must be proved, and the intention or negligence should be recognized. In this paper, it analyzes cases that were problematic in Korea, Germany, Spain, etc. Mainly focusing on the problems revealed in the determination of causal relationship, especially recognizing criminal liability related to products. Furthermore it is followed by the view of reviewing the cause-and-effect relationship by 2 steps, dividing natural scientific causation and the normative causal relationship. In this process, to acknowledge criminal product liability in accordance with recognizing cause-and-effect relationship, there should be general risk of specific substance causing the outcome. This only premise can be meaningful to examine the casual relationship from specific cases. As it shows in some cases and theories, it is not contradicting general law of cause and effect by determining specific causal relationship by free evaluation of evidence if a general causal relationship does not exist. Also since judge's testimony does not hold a dominant position from rule of thumb, it is possible to recognize specific causal relationship. However this paper takes position that if there is no objective and reasonably undeniable cause and effect law. If there is no objective and reasonably undeniable causal law, which is the premise for recognizing concrete causal relations, judge should sentence guilty according to "in dubio pro reo" principle. In addition, it is not allowed for the defendant to burden unproven fact by free evaluation of evidence which has an effect of shift of burden of proof.

  • PDF

Causality join query processing for data stream by spatio-temporal sliding window (시공간 슬라이딩윈도우기법을 이용한 데이터스트림의 인과관계 결합질의처리방법)

  • Kwon, O-Je;Li, Ki-Joune
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.219-236
    • /
    • 2008
  • Data stream collected from sensors contain a large amount of useful information including causality relationships. The causality join query for data stream is to retrieve a set of pairs (cause, effect) from streams of data. A part of causality pairs may however be lost from the query result, due to the delay from sensors to a data stream management system, and the limited size of sliding windows. In this paper, we first investigate spatial, temporal, and spatio-temporal aspects of the causality join query for data stream. Second, we propose several strategies for sliding window management based on these observations. The accuracy of the proposed strategies is studied by intensive experiments, and the result shows that we improve the accuracy of causality join query in data stream from simple FIFO strategy.

  • PDF