• Title, Summary, Keyword: 임계하중

Search Result 224, Processing Time 0.047 seconds

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plate (편심 보강평판의 기하학적 비선형 해석)

  • Jae-Wook Lee;Kie-Tae Chung;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.307-317
    • /
    • 1991
  • A displacement-based finite element method is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. The nonlinear degenerated shell and eccentric isobeam(isoparametric beam) elements are formulated on the basis of total Lagrangian and updated Lagrangian descriptions. To describe the stiffener's local plate buckling mode, some additional local degrees of freedom are used in the eccentric isobeam element. The eccentric isobeam element can be affectively employed to model the eccentric stiffener just like the case of the degenerated shell element. A detailed nonlinear analysis including the effects of stiffener's eccentricity is performed to estimate the critical load and the post buckling behaviour of an eccentrically stiffened plate. The critical buckling loads are found higher than analytic plate buckling load but lower than Euler buckling load which are the buckling strength requirements of classification society.

  • PDF

A Theoretical Study on the Analytical Solutions for Laterally Loaded Pile (횡방향 하중을 받는 말뚝의 해석해에 대한 이론적 고찰)

  • Lee, Seung-Hyun
    • Journal of Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.111-116
    • /
    • 2011
  • Analytical solutions for laterally loaded piles were derived. Critical pile length which can be considered as the length for behaving as long pile was investigated varying with densities of sandy soils. Lateral behaviors obtained from analytical solution and numerical solution were also investigated. Non-dimensional critical pile lengths obtained from analytical solutions for three types of pile head boundary conditions were 2.3~3.2. By comparing analytical solutions with numerical solutions, distribution of pile deflection and that of moment were similar and it can be seen that pile head deflection obtained by analytical method is conservative. And the values of moments were not too different between analytical solution and numerical solution.

Determination of the Critical Buckling Loads of Shallow Arches Using Nonlinear Analysis of Motion (비선형 운동해석에 의한 낮은 아치의 동적 임계좌굴하중의 결정)

  • Kim, Yun Tae;Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • Journal of The Korean Society of Civil Engineers
    • /
    • v.12 no.2
    • /
    • pp.43-54
    • /
    • 1992
  • For shallow arches with large dynamic loading, linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of shallow arches in which geometric nonlinearity must be considered. A program is developed for the analysis of the nonlinear dynamic behavior and for evaluation of critical buckling loads of shallow arches. Geometric nonlinearity is modeled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion and Newmark method is adopted in the approximation of time integration. A shallow arch subject to radial step loads is analyzed. The results are compared with those from other researches to verify the developed program. The behavior of arches is analyzed using the non-dimensional time, load, and shape parameters. It is shown that geometric nonlinearity should be considered in the analysis of shallow arches and probability of buckling failure is getting higher as arches are getting shallower. It is confirmed that arches with the same shape parameter have the same deflection ratio at the same time parameter when arches are loaded with the same parametric load. In addition, it is proved that buckling of arches with the same shape parameter occurs at the same load parameter. Circular arches, which are under a single or uniform normal load, are analyzed for comparison. A parabolic arch with radial step load is also analyzed. It is verified that the developed program is applicable for those problems.

  • PDF

Analysis of Lateral Behavior of PSC Bridge Girders under Wind Load During Construction (시공 중 풍하중에 의한 PSC 교량 거더의 횡방향 거동 해석)

  • Lee, Jong-Han;Kim, Kyung Hwan;Cho, Baiksoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.377-385
    • /
    • 2015
  • The span-lengthening of PSC I girder has increased the risk of lateral instability of the girder with the increases in the aspect ratio and self-weight of the girder. Recently, collapses of PSC I girder during construction raise the necessity of evaluating the lateral instability of the girder. Thus, the present study evaluated the lateral behavior and instability of PSC I girders under wind load, regarded as one of the main causes of the roll-over collapse during construction. Lateral instability of the girder is mainly dependent on the length of the girder and the stiffness of the support. The analysis results of this study showed the decrease in the critical wind load and the increase in the critical deformation and angle of the girder, leading to the lateral instability of the girder. Finally, this study proposed analytical equations that can predict the critical amount of wind load and lateral deformation of the girder, which would provide quantitative management values to maintain lateral stability of PSC I girder during construction.

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • /
    • pp.67-75
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit panicle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20$^{\circ}$~40$^{\circ}$. In condition that the loading angle is 20$^{\circ}$, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than I mm and loading rate less than 0.01 mm/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian 시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.320-328
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit particle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20°∼40°. In condition that the loading angle is 20°, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than 1 mm and loading rate less than 0.01㎜/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF

Effective Length Factors for Continuous Compression Members (연속 압축재의 유효길이 계수)

  • Choi, An-Ki;Song, Sang-Yong;Lee, Soo-Gon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.219-226
    • /
    • 2003
  • 보 유사법을 이용하여 연속 압축재의 유효길이 계수를 각 경간별로 결정하는 방법을 제안한다. 제안하는 보 유사법은 4가지 단계로 요약할수 있는데 그 첫 단계는 주어진 압축재를 이것과 동일한 단면성능 및 경간을 갖는 연속보로 치환하는 것이다. 제 2단계에서는 연속보 각 경간의 중앙에 가상 집중 횡하중을 작용시킨 후 이로 인한 지점들에서의 재단 moment를 계산한다. 이때 각 경간중앙의 가상 집중 횡하중 방향은 좌굴 mode를 고려하여 교호로 바뀌도록 한다. 제 3단계에서는 또 하나의 제안식과 재단 모멘트를 이용하여 Kinney의 부분 고정도를 결정한다. 최종단계에서는 부분 고정도를 이용하여 유효길이를 각 경간별로 산정 한다. 제안한 방법은 다 경간 압축재에서 어느 경간이 맨 먼저 좌굴을 일으키는지 또한 이때의 임계하중은 어떤 값을 갖는지를 예측하게 한다.

  • PDF

Dynamic Stability Analysis of Nonconservative Systems for Variable Parameters using FE Method (유한요소기법을 이용한 비보존력이 작용하는 보-기둥 구조의 다양한 제변수 변화에 따른 동적 안정성 해석)

  • Lee Jun-Seok;Min Byoung-Cheol;Kim Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.351-363
    • /
    • 2004
  • Equation of motion of non conservative system considering mass matrix, elastic stiffness matrix, load correction stiffness matrix by circulatory force's direction change and Winkler and Pasternak foundation stiffness matrix is derived. Also stability analysis due to the divergence and flutter loads is performed. And the influence of internal and external damping coefficient on flutter load is investigated applying the quadratic eigen problem solution. Additionally the influence of non-conservative force's direction parameter, internal and external damping and Winkler and Pasternak foundation on the critical load of Beck's and Leipholz's and Hauger's columns are investigated.

A Study on the Nonlinear Instability Behavior of Hybrid Structures(II) -Characteristic of Dynamic In-Plane Torsional Buckling under the STEP Load- (Hybrid 구조물의 비선형 불안정 거동에 관한 연구(II) -STEP 하중에서의 동적 면내비틀림 좌굴 특성-)

  • Kim, Seung Deog;Kim, Hyung Seok;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.599-608
    • /
    • 2001
  • Many papers which deal with the dynamic instability of shell-like structures under the STEP load has been published but there have been few papers related to the dynamic instability of hybrid cable domes. And also there are a few researches which treat the essential phenomenon of the dynamic buckling using the phase for investigating occurrence of chaos. In this study the indirect buckling of hybrid cable domes considering geometric nonlinearity are investigated numerically and compared it with the static critical load The dynamic critical loads are determined by the numerical integration of the geometric nonlinear equation of motion and the mechanism of the indirect buckling is examined by using the phase curves.

  • PDF

Buckling and Postbuckling Control of a Composite Beam with Embedded SMA Wire Actuators (형상기억합금 선 작동기를 삽입한 복합적층 보의 좌굴 및 좌굴후 제어)

  • Choi, S.;Lee, J.J.;Seo, D.C.;Choi, S.W.
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.45-54
    • /
    • 1999
  • In this paper, an experimental study on the buckling and postbuckling control of a laminated composite beam with eccentrically embedded SMA wire actuators is performed. For the purpose of enhancing the critical buckling load, buckling control is investigated through the use of reactive moment associated with the shape recovery force of SMA wire actuators. To improve the control authority for the buckling and postbuckling control of the SMA-composite beam, closed-loop control is used. The buckling and postbuckling control behaviours are presented and discussed qualitatively and quantitatively on loaddeflection plots considering the stacking sequence of the laminate, slenderness ratio of the beam and activation conditions of the SMA wire actuators. By maintaining the desired deflection shape with the proper reactive moment, buckling control can be extended to the postbuckling of the SMA-composite beam subjected to an external load.

  • PDF