• Title, Summary, Keyword: 임베딩

Search Result 323, Processing Time 0.033 seconds

Performance Improvement of Mathematical Formula Retrieval Using Two Different Kinds of Embedding (두 종류의 임베딩을 이용한 수식 검색 성능 개선)

  • Yang, Seon;Kim, Hyemin;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.616-618
    • /
    • 2018
  • 본 연구에서는 한글 질의어를 이용하여 MathML이라는 마크업 언어 형태로 저장된 수식을 검색하는 수식 검색 시스템을 제안하는데, 마크업 형태 자체에 대한 임베딩과 수식을 한글화 한 후의 임베딩이라는 두 가지 서로 다른 임베딩 결과를 이용하여 검색 성능을 향상시키는 것을 목표로 한다. 최근 자연어 처리의 많은 과제에서 임베딩은 거의 필수적으로 사용되고 있는데, 본 실험을 통해 자연어 문서가 아닌 마크업 형태 수식을 대상으로도 임베딩 사용이 성능 개선에 효과가 있음을 확인할 수 있다. 검색 환경을 실제와 유사하게 설정하기 위하여, 본 실험에서 사용하는 데이터에는 실험을 위해 수기로 작성된 수식들 외에도 실제 웹에서 가져온 여러 분야의 수많은 수식들이 포함된다. Indri 시스템을 이용하여 검색 실험을 수행한 결과, 임베딩을 활용하여 수식을 확장한 경우 수식 확장 이전에 비해 MRR 기준 4.8%p의 성능 향상을 확인할 수 있었다.

  • PDF

A typing error-robust Korean POS tagging using Hangul Jamo combination-based embedding (오타에 강건한 자모 조합 임베딩 기반 한국어 품사 태깅)

  • Seo, Dae-Ryong;Chung, Youjin;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.203-208
    • /
    • 2017
  • 본 논문은 한글 자모 조합 임베딩을 이용하여 오타에 강건한 한국어 품사 태깅 시스템을 구축하는 방법에 대해 기술한다. 최근 딥 러닝 연구가 활발히 진행되면서 자질을 직접 추출해야 하는 기존의 기계학습 방법이 아닌, 스스로 자질을 찾아서 학습하는 딥 러닝 모델을 이용한 연구가 늘어나고 있다. 본 논문에서는 다양한 딥 러닝 모델 중에서 sequence labeling에 강점을 갖고 있는 bidirectional LSTM CRFs 모델을 사용하였다. 한국어 품사 태깅 문제에서 일반적으로 사용되는 음절 임베딩은 약간의 오타에도 품사 태깅 성능이 크게 하락하는 한계가 있었다. 따라서 이를 개선하기 위해 본 논문에서는 한글 자모 임베딩 값을 조합시킨 음절 임베딩 방식을 제안하였다. 강제로 오타를 발생시킨 테스트 집합에서 실험한 결과, 자모 조합 임베딩 기법이 word2vec 음절 임베딩 방식에 비해 형태소 분할은 0.9%, 품사 태깅은 3.5% 우수한 성능을 기록하였다.

  • PDF

A typing error-robust Korean POS tagging using Hangul Jamo combination-based embedding (오타에 강건한 자모 조합 임베딩 기반 한국어 품사 태깅)

  • Seo, Dae-Ryong;Chung, Youjin;Kang, Inho
    • 한국어정보학회:학술대회논문집
    • /
    • /
    • pp.203-208
    • /
    • 2017
  • 본 논문은 한글 자모 조합 임베딩을 이용하여 오타에 강건한 한국어 품사 태깅 시스템을 구축하는 방법에 대해 기술한다. 최근 딥 러닝 연구가 활발히 진행되면서 자질을 직접 추출해야 하는 기존의 기계학습 방법이 아닌, 스스로 자질을 찾아서 학습하는 딥 러닝 모델을 이용한 연구가 늘어나고 있다. 본 논문에서는 다양한 딥 러닝 모델 중에서 sequence labeling에 강점을 갖고 있는 bidirectional LSTM CRFs 모델을 사용하였다. 한국어 품사 태깅 문제에서 일반적으로 사용되는 음절 임베딩은 약간의 오타에도 품사 태깅 성능이 크게 하락하는 한계가 있었다. 따라서 이를 개선하기 위해 본 논문에서는 한글 자모 임베딩 값을 조합시킨 음절 임베딩 방식을 제안하였다. 강제로 오타를 발생시킨 테스트 집합에서 실험한 결과, 자모 조합 임베딩 기법이 word2vec 음절 임베딩 방식에 비해 형태소 분할은 0.9%, 품사 태깅은 3.5% 우수한 성능을 기록하였다.

  • PDF

Link-Disjoint Embedding of Complete Binary Trees in 3D-Meshes (3차원 메쉬에 대한 완전 이진트리의 링크 충돌없는 임베딩)

  • 이주영;이상규
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.7_8
    • /
    • pp.381-386
    • /
    • 2003
  • In this paper, we consider the problem of embedding complete binary trees into 3-dimensional meshes. The method of embedding a complete binary tree into 3-dimensional mesh with the link congestion two is considered in [1], and the embedding in [2] shows that a complete binary tree can be embedded into a ,3-dimensional mesh of expansion 1.27. The proposed embedding in this paper shows that a complete binary tree can be embedded into a 3-dimensional mesh of expansion approximately 1.125 with the link congestion one, using the dimensional ordered routing. Such method yields some improved features in terms of minimizing the link congestion or the expansion of embedding comparing to the previous results.

Analysis of Commute Time Embedding Based on Spectral Graph (스펙트럴 그래프 기반 Commute Time 임베딩 특성 분석)

  • Hahn, Hee-Il
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.34-42
    • /
    • 2014
  • In this paper an embedding algorithm based on commute time is implemented by organizing patches according to the graph-based metric, and its performance is analyzed by comparing with the results of principal component analysis embedding. It is usual that the dimensionality reduction be done within some acceptable approximation error. However this paper shows the proposed manifold embedding method generates the intrinsic geometry corresponding to the signal despite severe approximation error, so that it can be applied to the areas such as pattern classification or machine learning.

Korean Phoneme Sequence based Word Embedding (한국어 음소열 기반 워드 임베딩 기술)

  • Chung, Euisok;Jeon, Hwa Jeon;Lee, Sung Joo;Park, Jeon-Gue
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.225-227
    • /
    • 2017
  • 본 논문은 한국어 서브워드 기반 워드 임베딩 기술을 다룬다. 미등록어 문제를 가진 기존 워드 임베딩 기술을 대체할 수 있는 새로운 워드 임베딩 기술을 한국어에 적용하기 위해, 음소열 기반 서브워드 자질 검증을 진행한다. 기존 서브워드 자질은 문자 n-gram을 사용한다. 한국어의 경우 특정 단음절 발음은 단어에 따라 달라진다. 여기서 음소열 n-gram은 특정 서브워드 자질의 변별력을 확보할 수 있다는 장점이 있다. 본 논문은 서브워드 임베딩 기술을 재구현하여, 영어 환경에서 기존 워드 임베딩 사례와 비교하여 성능 우위를 확보한다. 또한, 한국어 음소열 자질을 활용한 실험 결과에서 의미적으로 보다 유사한 어휘를 벡터 공간상에 근접시키는 결과를 보여 준다.

  • PDF

Bilingual Word Embedding using Subtitle Parallel Corpus (자막 병렬 코퍼스를 이용한 이중 언어 워드 임베딩)

  • Lee, Seolhwa;Lee, Chanhee;Lim, Heuiseok
    • Proceedings of The KACE
    • /
    • /
    • pp.157-160
    • /
    • 2017
  • 최근 자연 언어 처리 분야에서는 단어를 실수벡터로 임베딩하는 워드 임베딩(Word embedding) 기술이 많은 각광을 받고 있다. 최근에는 서로 다른 두 언어를 이용한 이중 언어 위드 임베딩(Bilingual word embedding) 방법을 사용하는 연구가 많이 이루어지고 있는데, 이중 언어 워드 임베딩에서 임베딩 절과의 질은 학습하는 코퍼스의 정렬방식에 따라 많은 영향을 받는다. 본 논문은 자막 병렬 코퍼스를 이용하여 밑바탕 어휘집(Seed lexicon)을 구축하여 번역 연결 강도를 향상시키고, 이중 언어 워드 임베딩의 사천(Vocabulary) 확장을 위한 언어별 연결 함수(Language-specific mapping function)을 학습하는 새로운 방식의 모델을 제안한다. 제안한 모델은 기존 모델과의 성능비교에서 비교할만한 수준의 결과를 얻었다.

  • PDF

Korean Phoneme Sequence based Word Embedding (한국어 음소열 기반 워드 임베딩 기술)

  • Chung, Euisok;Jeon, Hwa Jeon;Lee, Sung Joo;Park, Jeon-Gue
    • 한국어정보학회:학술대회논문집
    • /
    • /
    • pp.225-227
    • /
    • 2017
  • 본 논문은 한국어 서브워드 기반 워드 임베딩 기술을 다룬다. 미등록어 문제를 가진 기존 워드 임베딩 기술을 대체할 수 있는 새로운 워드 임베딩 기술을 한국어에 적용하기 위해, 음소열 기반 서브워드 자질 검증을 진행한다. 기존 서브워드 자질은 문자 n-gram을 사용한다. 한국어의 경우 특정 단음절 발음은 단어에 따라 달라진다. 여기서 음소열 n-gram은 특정 서브워드 자질의 변별력을 확보할 수 있다는 장점이 있다. 본 논문은 서브워드 임베딩 기술을 재구현하여, 영어 환경에서 기존 워드 임베딩 사례와 비교하여 성능 우위를 확보한다. 또한, 한국어 음소열 자질을 활용한 실험 결과에서 의미적으로 보다 유사한 어휘를 벡터 공간상에 근접시키는 결과를 보여 준다.

  • PDF

Embedding Torus into Petersen-Torus(PT) Networks (토러스를 피터슨-토러스(PT) 네트워크에 임베딩)

  • Seo, Jung-Hyun;Lee, Hyeong-Ok;Jang, Moon-Suk;Han, Soon-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.573-576
    • /
    • 2008
  • 본 논문은 분지수가 상수인 토러스를 피터슨-토러스 네트워크에 임베딩 가능함을 보인다. 토러스 T(5m, 2n)는 PT(m, n)에 연장율 5, 밀집율 5 그리고 확장율 1에 임베딩 가능함을 보였다. 추가로 토러스를 PT에 평균 연장율 3이하에 임베딩 가능함을 보였다. 널리 알려진 토러스 네트워크를 연장율과 밀집율을 5이하에 PT에 임베딩 함으로써 웜홀 라우팅 방식과 store-and-forward 방식 모두에서 임베딩 알고리즘이 사용 가능하고, 일대일 임베딩을 함으로써 시뮬레이션시 프로세서 작업 처리량을 최소화 하였다.

  • PDF

Emotion Classification in Dialogues Using Embedding Features (임베딩 자질을 이용한 대화의 감정 분류)

  • Shin, Dong-Won;Lee, Yeon-Soo;Jang, Jung-Sun;Lim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.109-114
    • /
    • 2015
  • 대화 시스템에서 사용자 발화에 대한 감정 분석은 적절한 시스템 응답과 서비스를 제공하는데 있어 매우 중요한 정보이다. 본 연구에서는 단순한 긍, 부정이 아닌 분노, 슬픔, 공포, 기쁨 등 Plutchick의 8 분류 체계에 해당하는 상세한 감정을 분석 하는 데 있어, 임베딩 모델을 사용하여 기존의 어휘 자질을 효과적으로 사용할 수 있는 새로운 방법을 제안한다. 또한 대화 속에서 발생한 감정의 지속성을 반영하기 위하여 문장 임베딩 벡터와 문맥 임베딩 벡터를 자질로서 이용하는 방법에 대해 제안한다. 실험 결과 제안하는 임베딩 자질은 특히 내용어에 대해 기존의 어휘 자질을 대체할 수 있으며, 데이터 부족 문제를 다소 해소하여 성능 향상에 도움이 되는 것으로 나타났다.

  • PDF