• Title, Summary, Keyword: 자동 추출 자질

Search Result 63, Processing Time 0.094 seconds

Question Similarity Analysis in dialogs with Automatic Feature Extraction (자동 추출 자질을 이용한 대화 속 질의 문장 유사성 분석)

  • Oh, KyoJoong;Lee, DongKun;Lim, Chae-Gyun;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.347-351
    • /
    • 2018
  • 이 논문은 대화 시스템에서 질의를 이해하기 위해 딥 러닝 모델을 통해 추출된 자동 추출 자질을 이용하여 문장의 유사성을 분석하는 방법에 대해 기술한다. 문장 간 유사성을 분석하기 위한 자동 추출 자질로써, 문장 내 표현 순차적 정보를 반영하기 위한 RNN을 이용하여 생성한 문장 벡터와, 어순에 관계 없이 언어 모델을 학습하기 위한 CNN을 이용하여 생성한 문장 벡터를 사용한다. 이렇게 자동으로 추출된 문장 임베딩 자질은 금융서비스 대화에서 입력 문장을 분류하거나 문장 간 유사성을 분석하는데 이용된다. 유사성 분석 결과는 질의 문장과 관련된 FAQ 문장을 찾거나 답변 지식을 찾는데 활용된다.

  • PDF

Text Categorization Features Automatic Extraction Method Using Chi-squared Statistic (카이제곱 통계량을 이용한 문서분류 자질 자동추출 방법)

  • Park, Jong-Hyun;Park, So-Young;Chang, Ju-No;Kihl, Tae-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.695-697
    • /
    • 2010
  • 문서에 포함되는 어휘는 문서 분류의 정보를 가지므로 문서를 분석하여 유용한 단어를 추출하는 것은 다양한 서비스와 연계되어 사용될 수 있어 매우 유용한 일이다. 문서 자동 분류에서는 분류자질 선정 방식에 따라 분류정확도가 서로 달라질 수 있으며, 문서에서 추출되는 유용한 단어에 따라 인지되는 분야가 달라질 수 있다. 이에 본 논문에서는 각 문서에 포함되는 단어에 대한 카이제곱 통계량 점수를 사용하여 단어별 문서 분류에 대한 단어의 자질을 평가하고 문서의 분류별 유용한 단어를 자동 추출하는 방법을 제안하고 개발한다.

  • PDF

Automatic Text Categorization Using Term Information of Anchor Text (Anchor Text의 단어 정보를 이용한 자동 문서 범주화)

  • Heo, Hee-keun;Han, Gi-deok;Jung, Sung-won;Lim, Sung-shin;Kwon, Hyuk-chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.665-668
    • /
    • 2004
  • 최근의 웹 문서는 텍스트뿐만 아니라 이미지, 사운드 등 다른 여러 형태로 표현되고 있어서 텍스트의 비중이 낮아지고 있다. 그래서 문서 내에서 일정량 이상의 단어 추출이 어려운 문서들에 대해서 기존의 단어 정보만을 이용한 문서 범주화 방법은 좋은 성능을 기대할 수 없다. 그래서 본 논문은 Anchor Text 단어 정보의 자질 적합성 판단에 의한 새로운 자동 문서 범주화 모델을 제안한다. 문서 범주화 모델로는 베이지언 확률 모델을 이용하였으며, 카이제곱 통계량을 사용하여 자질을 선정하였다. 문서 내에서 추출된 단어 자질들이 해당 문서를 판단하는데 부족하다고 판단되면 문서의 링크정보를 이용하여 연결된 문서의 단어 자질과 Anchor Text의 단어 자질을 반영함으로써 성능을 향상시킨다.

  • PDF

Semi-Automatic Tree Annotating Workbench Using Neural-Networks (신경망을 이용한 반자동 구문분석 말뭉치 구축도구)

  • 임준호;곽용재;박소영;임해창
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.483-485
    • /
    • 2003
  • 구문분석 말뭉치는 통계적 구문분석 분야의 필수적인 항목으로 많은 유용성을 가지지만, 말뭉치를 구축할 때 막대한 시간과 비용이 요구되기 때문에 구축자의 수작업을 감소시키는 방법에 대한 연구가 필요하다. 본 논문에서는 대량의 신뢰도 있는 구문분석 말뭉치를 구축하기 위해 신경망을 사용하는 반자동 구문 분석 말뭉치 구축도구에 대해서 설명한다. 개발된 도구는 구문패턴 추골, 신경망 학습, 반자동 구축의 세 단계로 구성된다. 구문패턴 추출 단계에서는 사용자가 정의한 자질집합을 사용하여 기존에 구축된 말뭉치에서 구문패턴들을 추출하고, 신경망 학습의 단계에서는 추출된 구문패턴들을 사용하여 신경망을 학습한다. 그리고, 반자동 구축 단계에서는 학습된 신경망을 사용하여 반자동으로 구문분석 말뭉치를 구축한다. 본 논문에서 제안하는 방법은 다양한 자질집합을 조합하여 사용할 수 있고, 학습을 사용하기 때문에 학습 집합에 나타나지 않은 경우에 대해서도 합리적인 결정을 내릴 수 있다. 소량의 구문분석 말뭉치를 대상으로 실험한 결과, 본 논문에서 제안하는 방법이 약 42.5%의 수작업 횟수 감소율을 보였음을 알 수 있었다.

  • PDF

Automatic Text Categorization Using Text Summarization Techniques (문서 요약 기법을 이용한 자동 문서 범주화)

  • Park, Jin-Woo;Ko, Young-Joong;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.138-145
    • /
    • 2001
  • 자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 분류하는 작업이다. 문서 분류를 위해서는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고, 이러한 자질들을 통해 분류할 문서를 표현해야 한다. 기존의 연구들은 문장간의 구분 없이, 문서 전체에 나타난 각 자질의 빈도수를 이용하여 문서를 표현 한다. 그러나 하나의 문서 내에서도 중요한 문장과 그렇지 못한 문장의 구분이 있으며, 이러한 문장 중요도의 차이는 각각의 문장에 나타나는 자질의 중요도에도 영향을 미친다. 본 논문에서는 문서에서 사용되는 중요 문장 추출 기법을 문서 분류에 적용하여, 문서 내에 나타나는 각 문장들의 문장 중요도를 계산하고 문서의 내용을 잘 나타내는 문장들과 그렇지 못한 문장들을 구분하여 각 문장에서 출현하는 자질들의 가중치를 다르게 부여하여 문서를 표현한다. 이렇게 문장들의 중요도를 고려하여 문서를 표현한 기법의 성능을 평가하기 위해서 뉴스 그룹 데이터를 구축하고 실험하였으며 좋은 성능을 얻을 수 있었다.

  • PDF

Text Categorization Based on Terminology and Information Extraction (전문용어 및 정보추출에 기반한 문서분류시스템)

  • Lee, Kyung-Soon;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.79-84
    • /
    • 1999
  • 본 연구에서는 문서분류시스템에서 자질의 표현으로 전문분야사전을 이용한 분야정보와 개체정보추출을 통한 개체정보를 이용한다. 또한 지식정보를 보완하기 위해 통계적인 방법으로 범주 전문용어를 인식하여 자질로 표현하는 방법을 제안한다. 문서에 나타난 용어들이 어떤 특정 전문분야에 속하는 용어들이 많이 나타나는 경우 그 문서는 용어들이 속한 분야의 문서일 가능성이 높다. 또한, 정보추출을 통해 용어가 어떠한 개체를 나타내는지를 인식하여 문서를 표현함으로써 문서가 내포하는 의미를 보다 잘 반영할 수 있게 된다. 분야정보나 개체정보를 알 수 없는 용어에 대해서는 학습문서로부터 전문분야를 자동 인식함으로써 문서표현의 지식정보를 보완한다. 전문분야, 개체정보 및 범주전문용어에 기반해서 표현된 문서의 자질에 대해서 지지벡터기계 학습에 기반한 문서분류기틀 이용하여 각 범주에 대해 이진분류를 하였다. 제안된 문서자질표현은 용어기반의 자질표현에 비해 좋은 성능을 보이고 있다.

  • PDF

A Study on the Feature Selection for Automatic Document Categorization (자동문헌분류를 위한 대표색인어 추출에 관한 연구)

  • 황재영;이응봉
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • /
    • pp.55-64
    • /
    • 2003
  • 인터넷 학술정보자원이 급증하고 있는 가운데 자동문헌분류에 대한 관심과 필요성도 늘어가고 있다. 자동문헌분류에 관한 실험은 전처리 단계인 대표색인어 추출과 추출된 대표색인어의 분류성능 평가 실험으로 구분 할 수 있는데, 본 연구에서는 우선 대표색인어 추출을 위해 다양한 대표색인어(자질) 추출 방법에 따른 색인어 성능평가 실험 및 최적의 대표색인어 개수 선정 실험을 수행하였다.

  • PDF

Automatic Classification of Blog Posts (블로그 포스트의 자동 분류 시스템)

  • Jho, Hee-Sun;Kim, Su-Ah;Lee, Hyun-Ah
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.160-162
    • /
    • 2013
  • 편리한 블로그 사용과 블로그에서의 정보 탐색을 위해서는 내용에 기반한 분류가 필요하다. 대부분의 블로그 사이트에서는 내용 기반 분류를 제공하고 있으나, 블로거들은 자신이 작성한 블로그에 대한 수동 분류를 입력하지 않는 경우가 많다. 본 논문에서는 분류가 제공되는 블로그 사이트에서 각 분류별 문서를 수집하고, 어휘빈도와 문서빈도, 분류별 빈도를 활용하여 문서 내 어휘의 자질 가중치를 부여하고, 다양한 학습기를 이용하여 분류 모델을 생성한 뒤 블로그의 특성에 적합한 자질 추출 알고리즘과 분류 알고리즘을 찾아낸다. 실험에서는 본 논문에서 고안한 CTF-IECDF와 나이브 베이즈 멀티노미얼로 조합한 분류 모델이 75.40%의 분류 정확률을 보였다.

  • PDF

Performance Evaluation of a Naive Bayesian Classifier using various Feature Selection Methods (자질선정에 따른 Naive Bayesian 분류기의 성능 비교)

  • 국민상;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • /
    • pp.33-36
    • /
    • 2000
  • 베이즈 확률을 이용한 분류기는 자동분류 초기부터 사용되어 아직까지 이 분야에서 가장 많이 사용되는 분류기 중 하나이다. 본 논문에서는 KTSET 문서에서 임의로 추출한 198건의 정보과학회 관련 논문의 제목 및 초록을 대상으로 베이즈 확률을 이용한 문서의 자동분류 실험을 수행하였으며, 더불어 Naive Bayesian 분류기에 가장 적합한 자질선정 방법을 찾고자 카이제곱 통계량, 상호정보량 및 기대상호정보량, 정보획득량, 역문헌빈도, 역카테고리빈도 등 6가지의 자질선정 기준을 실험하였다. 실험 결과는 카이제곱 통계량을 이용한 분류 실험의 성능이 가장 좋았고, 기대상호정보량과 정보획득량, 역카테고리빈도 또한 자질수에 큰 영향을 받지 않고 비교적 안정적인 성능을 보였다.

  • PDF

Feature Selection and Classification of Web Pages (웹 페이지에서의 자질 선택과 분류)

  • 송무희;임수연;박성배;강동진;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.796-798
    • /
    • 2004
  • 본 논문에서는 웹 문서의 분류 성능을 향상시키기 위해 웹 페이지에서의 자질선택과 그에 따른 웹 문서 분류 방법을 제안한다. 문서 분류에는 문서에 포함된 단어를 분류 자질로 사용하게 되며 이때 한 문서의 모든 단어를 분류 자질로 이용한다고 좋은 성능을 보인다고 보장할 수는 없다. 그러므로 문서에 필요한 단어만을 자동으로 추출하여 문서데이터의 자질을 축소하는 작업이 필요하다. 따라서 본 논문에서는 모집군 내의 자질벡터의 범위가 큰 것을 적은 수의 주요성분으로 감소시키기 위해 통계적 분석 기법중의 하나인 주성분분석 방법을 이용하여 자질감소와 그에 따른 문서분류의 성능 향상을 실험을 통하여 보인다. 야후 스포츠 뉴스 웹 페이지가 분류를 위해 사용되었으며, 분류기로는 Naive Bayesian 분류 방법을 사용하였다. 실험 결과를 통해 본 논문에서 제안한 뉴스 웹페이지 분류 방법이 스포츠 뉴스 데이터 군에서 만족할 만한 분류 정확도를 제공한다는 것을 알 수 있다.

  • PDF