• Title, Summary, Keyword: 자연어처리

Search Result 618, Processing Time 0.048 seconds

Natural Language Interface for MPEG IoMT (MPEG IoMT 에서의 자연어 인터페이스 표준화)

  • Choi, Miran
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.281-284
    • /
    • 2019
  • 본 논문에서는 최근 인공지능 기반의 자연어이해기술을 활용한 자연어 인터페이스 표준화 현황을 소개하고 사물기반의 미디어 사물간의 기능들을 표준화하고 있는 MPEG IoMT 표준에서의 자연어 인터페이스 구현 내용을 소개한다. 자연어 인터페이스에는 음성인식 기술, 음성합성 기술, 언어처리 기술, 질의응답기술, 음성 자동통역 기술등이 포함되며 언어지능으로서의 자연어 인터페이스를 사물 인터넷 환경에서 구현하기 위해 MPEG IoMT 의 표준화된 포맷과 활용 방식을 소개한다.

  • PDF

Boolean Formulation of Korean Natural Language Queries Using Syntactic Analysis (구문 분석에 기반한 자연어 질의로부터의 불리언 질의 생성)

  • Park, Mi-Hwa;Won, Hyung-Suk;Lee, Won-Il;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.73-80
    • /
    • 1998
  • 본 연구는 자연어 질의의 형태 및 구문 정보를 바탕으로 불리언 질의를 생성하는데 그 목적을 둔다. 일반적으로 대부분의 상용정보검색시스템은 입력형식을 검색성능이 종은 불리언 형태로 하고 있으나, 일반 사용자는 자신이 원하는 정보를 불리언 형태로 표현하는데 익숙하지 않다. 그러므로 본 정보검색시스템은 자연어 질의를 기본 입력형태로 하여 사용자의 편의성을 높이고, 이 질의를 범주문법에 기반한 구문분석 결과에 의해 복합명사를 고려한 불리언 형태로 변환하여 검색을 수행함으로써 시스템의 검색 성능의 향상을 도모하였다. 정보검색 실험용 데이터 모음인 KTSET2.0으로 실험한 결과 본 논문에서 제안한 자연어 질의로부터 자동 생성된 불리언 질의의 검객성능이 KTSET2.0에서 제공하는 수동으로 추출한 불리언 질의보다 8% 더 우수한 성능을 보였고, 기존 자연어질의 시스템이 수용해온 방법인 형태소 분석을 거쳐 불용어를 제거한 후 Vector 모델을 적용하여 검색을 수행한 경우보다는 23% 더 나은 성능을 보였다.

  • PDF

Korean Pronouns and Anaphoric Scale (한국어 대명사들과 조응성의 등급)

  • Sung, Won-Kyung;Park, Soo-Jun;Cha, Keon-Hoe;Park, Jae-Deuk;Seo, Lai-Won
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.391-395
    • /
    • 1997
  • 한국어 문법 연구에서 뿐만 아니라, 현대 언어학에서는 일반적으로 대명사들은 재귀적 대명사와 비재귀적 대명사라는 두 개의 구분된 통사 범주로 분류된다는 대명사의 이분법적 통사 분류 가설이 지배적이다. 그러나 최근 [Hertz 92ab]가 제시한 조응성의 등급(anaphoric scale)이라는 개념에 의거한 본 연구에서는 한국어 대명사들을 두 개의 구분된 통사 범주로 이분하지 않으며 오직 서로 다른 조응도(anaphoric degree)에 의해서만 구분하는 스칼라식 관점을 제안하였다. 한국어 대명사들의 조응도를 기술하기 위해 본 연구에서는 몇 가지 통사 의미적 준거 항목들을 제시하였다. 본 연구의 접근 방법은 그간 많은 연구들에 의해 밝혀진 바와 같은 대명사들의 다양하고도 이질적인 통사 의미 특성들을 자연스럽게 설명하여 줄 수 있다는 장점이 있다. 반면, 이와 같은 대명사들의 통사 의미적 다양성은 전통적인 이분법적 분류의 관점에서는 풀기 어려운 숙제로 남게 된다.

  • PDF

Automatic Grading System for Subjective Questions Through Analyzing Question Type (질의문 유형 분석을 통한 서답형 자동 채점 시스템)

  • Kang, Won-Seog
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.13-21
    • /
    • 2011
  • It is not easy to develop the system as the subjective-type evaluation has the difficulty in natural language processing. This thesis designs and implements the automatic evaluation system with natural language processing technique. To solve the degradation of general evaluation system, we define the question type and improve the performance of evaluation through the adaptive process for each question type. To evaluate the system, we analyze the correlation between human evaluation and term-based evaluation, and between human evaluation and this system evaluation. We got the better result than term-based evaluation. It needs to expand the question type and improve the adaptive processing technique for each type.

RNN Based Natural Language Sentence Generation from a Knowledge Graph and Keyword Sequence (핵심어 시퀀스와 지식 그래프를 이용한 RNN 기반 자연어 문장 생성)

  • Kwon, Sunggoo;Noh, Yunseok;Choi, Su-Jeong;Park, Se-Young
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.425-429
    • /
    • 2018
  • 지식 그래프는 많은 수의 개채와 이들 사이의 관계를 저장하고 있기 때문에 많은 연구에서 중요한 자원으로 활용된다. 최근에는 챗봇과 질의응답과 같은 연구에서 자연어 생성을 위한 연구에 활용되고 있다. 특히 자연어 생성에서 최근 발전 된 심층 신경망이 사용되고 있는데, 이러한 방식은 모델 학습을 위한 많은 양의 데이터가 필요하다. 즉, 심층신경망을 기반으로 지식 그래프에서 문장을 생성하기 위해서는 많은 트리플과 문장 쌍 데이터가 필요하지만 학습을 위해 사용하기엔 데이터가 부족하다는 문제가 있다. 따라서 본 논문에서는 데이터 부족 문제를 해결하기 위해 핵심어 시퀀스를 추출하여 학습하는 방법을 제안하고, 학습된 모델을 통해 트리플을 입력으로 하여 자연어 문장을 생성한다. 부족한 트리플과 문장 쌍 데이터를 대체하기 위해 핵심어 시퀀스를 추출하는 모듈을 사용해 핵심어 시퀀스와 문장 쌍 데이터를 생성하였고, 순환 신경망 기반의 인코더 - 디코더 모델을 사용해 자연어 문장을 생성하였다. 실험 결과, 핵심어 시퀀스와 문장 쌍 데이터를 이용해 학습된 모델을 이용해 트리플에서 자연어 문장 생성이 원활히 가능하며, 부족한 트리플과 문장 쌍 데이터를 대체하는데 효과적임을 밝혔다.

  • PDF

Study of Meta Data for Natural Language Query Processing (자연어 질의 처리를 위한 Meta Data에 관한 연구)

  • 신세영;정은영;김승권;김수영;박순철
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • /
    • pp.201-209
    • /
    • 2000
  • 정보산업의 발달과 함께 일반 사용자들의 데이터베이스의 사용이 증가함에 따라 부정확한 자연어 질의 처리를 할 수 있는 인공 지능적인 질의시스템이 필요하게 되었다. 이러한 질의시스템이 자연어 질의를 처리하려면 불확실한 데이터들에 대한 정보를 제공하는 MetaData가 반드시 필요하고, 데이터베이스 분야와 인공지능 분야의 이론들을 바탕으로 MetaData의 정형화 및 분류가 필요하다. 본 연구에서는 퍼지이론, 확률이론을 기초로 하여 소속척도, 근접추론, 유사관계, 데이터마이닝 기법 등을 이용하여 MetaData를 정형화하고 분류하였다.

  • PDF