• Title/Summary/Keyword: 전단강도의 이방성

Search Result 2, Processing Time 0.05 seconds

Anisotropic Shear Strength of Artificially Fractured Rock Joints Under Low Normal Stress (낮은 수직응력 하에서 인공 절리면의 전단 이방성에 관한 연구)

  • 곽정열;이상은;임한욱
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.169-179
    • /
    • 2003
  • Anisotropic shear strength of rock joints is studied based on the artificially fractured specimens using experimental and analytical methods. Series of direct shear tests are performed to obtain the strength, stiffness and friction angle of joints under various low normal stresses and shearing directions. The results of shear strength and stiffness show anisotropic value according to shearing direction under low normal stress specially less than 2.45 MPa. But, the effect of joint roughness on strength decreases with increasing normal stress. To estimate more effectively the peak shear strength under low normal stress, the modified Barton's equation is suggested.

Anisotropy of shear strength according to roughness in joint surface (절리면 거칠기에 의한 전단강도 이방성)

  • 이창훈;정교철
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.421-437
    • /
    • 2002
  • In order to quantify the anisotropic properties of rock included joints and shear behavior in joint surface, the mold is Produced for rock joint surface using gypsum Plaster and Peformed for replicated joint models made of cement mortar. Rock sample is measured using mechanical profilometer before testing and their result is expressed quantitatively. The statistical parameters and the fractal dimension by fractal theory for roughness is investigated its coordinate value for numerical process. The shear strength to the shear displacement in low level normal stress ismaintained or increased in most joint models. Their results present that this relationship is depended several roughness properties in joint model for natural rock joint. The relationship between the shear strength and the Properties for profiles estimated by some statistical parameter in roughness has the low correlation and is not constant. The result between the data for direct shear test and using Barton's equation, Barton's equation has not the effectiveness for the effect of anisotropy and has not suitable to recognizing the properties for joint surface. It means that JRC has not the properties of anisotropic rock surface. The fractal dimension is well correlated with the data of direct shear test than those of JRC. New experimental formulae using fractal dimension is comported with the anisotropic properties for direct shear test.