• Title, Summary, Keyword: 종주 특이성

Search Result 5, Processing Time 0.035 seconds

Synchronization of Cell Cycle in Korean Hydrogen Producing Cyanobacterial Strains (한국산 수소생산 남세균 종주들의 세포주기 동조화)

  • Park, Jong-Woo;Ahn, Se-Hee;Kim, Hyung-Seop;Yih, Won-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.663-670
    • /
    • 2011
  • Under a daily photoperiod of 14h light and 10h dark synchronization of cell cycle in Korean Cyanothece spp. strains and $Synechococcus$ sp. strain Miami BG043511 was analyzed as to be applicable to enhanced hydrogen production. For all strains peaks of double cell were observed during the light period of a daily cycle. Peaks of maximal cell size measured by a coulter counter appeared at the peak of double cells observed under light microscope reconfirming the synchronization of daily cell cycle. The cell cycle synchronization became weakened within two days when treated with continuous illumination. Rapid detection of the peak time of double cell percentage by coulter counters may contribute to quasi-realtime feedback control for efficient production of photobiological hydrogen by unicellular cyanobacterial strains.

Current Status of Photobiological Hydrogen Production Technology Using Unicellular Marine Cyanobacterial Strains (단세포성 해양남세균 종주를 이용한 광생물학적 수소생산 기술)

  • Park, Jong-Woo;Kim, Jae-Man;Yih, Won-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.63-68
    • /
    • 2009
  • Among various microscopic organisms producing photobiological hydrogen, cyanobacteria have long been recognized as the promising biological agents for hydrogen economy in 21 century. For photobiological production of hydrogen energy, marine unicellular $N_2$-fixing cyanobacteria have been evaluated as an ideal subgroup of Cyanophyceae. To develope the hydrogen production technology using unicellular $N_2$-fixing cyanobacteria, 3 important factors are pre-requisite: 1) isolation of the best strain from marine natural environment, 2) exploration on the strain-specific optimal conditions for the photobiological hydrogen production, and finally 3) application of the molecular genetic tools to improve the natural ability of the strain to produce hydrogen. Here we reviewed the recent research & development to commercialize photobiological hydrogen production technology, and suggest that intensive R&D during next 10-15 years should be imperative for the future Korean initiatives in the field of the photobiological hydrogen production technology using photosynthetic marine unicellular cyanobacterial strains.

Photobiological Hydrogen Production by Korean $N_2$-fixing Unicellular Cyanobacterial Strains (국내 연안산 질소고정 단세포 남세균 종주의 광생물학적 수소생산력)

  • Park, Jong-Woo;Myung, Geum-Og;Yih, Won-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.104-110
    • /
    • 2010
  • Photobiological hydrogen production by nitrogen-fixing unicellular cyanobacteria has long been considered to be an environmentally sound and very promising method for the future supply of renewable clean energy. We tried to find out the optimum cell concentration for $H_2$ production in each of the two new Korean nitrogen-fixing unicellular cyanobacterial strains to compare with Synechococcus sp. strain Miami BG043511. The two Korean strains, Cyanothece sp. KNU CB MAL-031 and KNU CB MAL-058, were isolated from Korean west coasts. Cell concentrations up to 17 billion cells $ml^{-1}$ were applied to the tests. High cell concentration over 15 billion cells $ml^{-1}$ resulted in drastically reduced $H_2$ production in all the three strains. The two domestic strains, however, produced 2-3 time more hydrogen than Synechococcus sp. Miami BG043511 at cell concentrations of 5-10 billion cells $ml^{-1}$. At lower cell concentrations than 2 billion cells $ml^{-1}$, MAL-031 exhibited highest $H_2$ production followed by Miami BG043511, with far less production in MAL-058. Present result suggests that Cyanothece sp. MAL-CB031 might be one of the ideal nitrogen-fixing unicellular cyanobacterial strains for the photobiological hydrogen production.

Optimal Temperature for H2 Production and Population Growth of the N2-fixing Unicellular Cyanobacterial Strains from Korean Coasts (한국 연안산 질소고정 단세포 남세균 종주의 최적 성장 및 수소생산 온도)

  • Park, Jongwoo;Kim, Hyungseop;Yih, Wonho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Photobiological hydrogen production by nitrogen-fixing unicellular cyanobacteria has long been considered to be an environmentally sound and very promising method for the future supply of renewable clean energy. Using six Korean nitrogen-fixing unicellular cyanobacterial strains and the Synechococcus sp. strain Miami BG043511 we performed cultivation experiments to find out the strain-specific optimal temperature for population growth and $H_2$ production. Under $20^{\circ}C$ the population growth of all the tested strains was significantly retarded in contrasts to the faster and higher growth under 25, 30 or $35^{\circ}C$. The highest growth rates in all the 7 strains were measured under $30^{\circ}C$ while the maximal biomass yields were under $30^{\circ}C$ (strains CB-MAL 026, 054, and 055) or $35^{\circ}C$ (strains 002, 031, 058, and Miami BG043511). The difference between the maximal biomass yields at $30^{\circ}C$ and $35^{\circ}C$ was not greater than 10%. The quantity of photobiologically produced $H_2$ was only slight larger under $35^{\circ}C$ than that under $20^{\circ}C$. Our result may suggest a two-step process of $H_2$ production which includes rapid and sizable production of biomass at $30^{\circ}C$ and the following high $H_2$ production at $20^{\circ}C$ by the test strains of marine nitrogen-fixing unicellular cyanobacteria.

Na-Ca Exchange in Sarcolemmal Vesicles Isolated from Cat Ileal Longitudinal Muscle (고양이 회장 종주근에서 Na-Ca 교환 기전의 특성에 관한 연구)

  • Woo, Jae-Suk;Suh, Duk-Joon;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean journal of physiology & pharmacology
    • /
    • v.23 no.2
    • /
    • pp.237-252
    • /
    • 1989
  • Effect of a $Na^+$ gradient on $Ca^{2+}$ uptake was studied in isolated sarcolemmal vesicles of cat ileal longitudinal muscle. $Ca^{2+}$ uptake was markedly stimulated in the presence of an outwardly directed $Na^+$ gradient. External $Na^+$, monensin and A23187 abolished the $Na^+-dependent$ $Ca^{2+}$ uptake. Monovalent cations such as $K^+$, $Li^+$, $Rb^+$, $Cs^+$ and choline could not substitute for $Na^+$ in enhancement of $Ca^{2+}$ uptake. Divalent cations such as $Ba^{2+}$, $Sr^{2+}$, $Mn^{2+}$ and $Cd^{2+}$ but not $Mg^{2+}$ inhibited the $Na^+-dependent$ $Ca^{2+}$ uptake. Increase in external pH in the range of 6.0 to 8.0 stimulated the $Na^+-dependent$ $Ca^{2+}$ uptake. Amiloride inhibited the $Na^+-dependent$ $Ca^{2+}$ uptake at concentrations above 0.5 mM, whereas diltiazem or vanadate did not. The apparent Km of the $Na^+-dependent$ $Ca^{2+}$ uptake for $Ca^{2+}$ was 18.2 ${\mu}M$ and apparent Vmax was 689.7 pmole/mg protein/5 sec. Kinetic analysis of the $Na^+-dependent$ $Ca^{2+}$ uptake showed a noncompetitive interaction between internal $Na^+$ and external $Ca^{2+}$. The dependence of $Ca^{2+}$ uptake on internal $Na^+$ showed sigmoidal kinetics and Hill coefficient for internal $Na^+$ was 2.52. Inside positive membrane potential generated by imposing an inwardly directed $K^+$ gradient and valinomycin significantly stimulated the $Na^+-dependent$ $Ca^{2+}$ uptake. These results indicate that a $Na^+-Ca^{2+}$ exchange system exists in the sarcolemmal membranes isolated from cat ileal longitudinal muscle and it might operate as an electrogenic process.

  • PDF