• Title, Summary, Keyword: 주철결합제 숫돌

Search Result 2, Processing Time 0.026 seconds

A study on the analysis of grinding mechanism by using optimum in-process electrolytic dressing (최적 연속 전해드레싱에 의한 연삭기구의 규명에 관한 연구)

  • Lee, Eun-Sang;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1298-1310
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of brittle materials used in electric, optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of brittle materials. However, the present dressing system cannot have control of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel, and give very effective control according to unstable current and gap increase. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of brittle materials.

Development of Optimum In-process Electrolytic Dressing System in the UItraprecision Grinding (초정밀 연삭용 최적 연속 전해드레싱 시스템의 개발에 관한 연구)

  • 이은상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • /
    • pp.82-103
    • /
    • 1995
  • In recent years grinding techniques for precision machining of brittle materials used in electric optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasibve wheel makes possible the effective precision grinding of brittle materials. But the present dressing system cannot have control of optimum dressing of the superabrasive wheel. This study has proposed a new optimum in-process dressing of superabrasive wheel and give very effective control according to gap increase.

  • PDF