• Title/Summary/Keyword: 주행안전성

Search Result 153, Processing Time 0.138 seconds

A Study on the Running Safety by F26 Turnout and Vehicle Model (F26 분기기 및 열차모델을 이용한 주행안전성 연구)

  • Kim, Sung-Jong;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.859-864
    • /
    • 2009
  • When the vehicle passes through turnout, the design is required to minimize the change of lateral force. Therefore, in case the vehicle passed the through turnout, we ought to execute dynamic analysis of the interaction between the vehicle and turnout in order to make an estimate of the lateral force and the derailment coefficient on the turnout. In this paper, we established the analytical model of the vehicle and turnout and analysed running safety when the vehicle passes through turnout in order to improve running safety of the vehicle on turnout. Also, to verify the vehicle and turnout model, we analysed reaction force and running behavior between wheel and rail, and running safety of the vehicle by changing cradle part and the tongue rail when the vehicle passes through turnout.

Running Safety Analysis of Railway Vehicle Systems for Ground Vibration (철도 차량의 지반진동에 의한 주행안전성 평가)

  • Choi, Jun-Sung;Jo, Man-Sup;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.16 no.4
    • /
    • pp.288-295
    • /
    • 2006
  • In this study, dynamic behavior of the vehicles is analyzed, while the track is subjected to lateral vibrations due to earthquake and blasting load. A computer program(WERIA, Wheel Rail Interaction Analysis) is used, which can simulate dynamic responses of vehicles subjected to lateral vibrations. The analysis considers two types of vehicles: I.e. power cars of KTX and Busan subway train. It can also consider the interaction with sub-structures such as tracks and soil. The creep force module is considered, and the running safety of railway vehicles subjected to earthquake and blasting loading is studied. Based on the results of this study, the running safety of the vehicles can be confirmed against lateral vibration.

An Analysis of Running Safety for Railway Vehicle Depending on Actual Track Conditions (실제선로 조건에 따른 철도차량의 주행안전성 해석)

  • Kim, Yong-Won;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.983-988
    • /
    • 2009
  • When the railway vehicle passing through curves & transitions, the running speed must improve by proposing the practical standard about maximum running possibility speed of each section on existing line considering running safety. In this paper, when the railway vehicle passing through curves of actual track conditions (Namsunghyun-Chungdo up & down lines), the effect that has influence on running safety is examined to devise the high speed of vehicle which passing through curves which risk of derailment is high. The running safety analysis is performed that running speed by curve radius improves 5-20% compared with existing speed under actual track conditions. In result of the running safety analysis, in case the speed condition is fewer than 15% compared with existing speed, the derailment coefficient and unloading ratio are within acceptable level. so we could confirm possibility of speed improvement on the whole Namsunghyun-Chungdo up & down lines.

차륜/레일 작용력 측정을 위한 스트레인 게이지 응용기술

  • 함영삼;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.176-176
    • /
    • 2004
  • 21세기 고속철도시대에 진입하면서 차량고속화에 수반하여 주행안전성 면에서 빼놓을 수 없는 문제로 가장 중요한 탈선의 현상이 있다. 철도에 있어서 탈선은 대형사고로 직결되기 때문에 결코 쉽게 간과할 수 없는 부분이며, 철도가 다른 교통수단에 비해 상대적인 장점으로 내세울 수 있는 안전성을 확보하기 위하여 반드시 차륜과 레일 사이에서 발생하는 상호 작용력을 측정하여 탈선가능성을 평가하여야만 한다.(중략)

  • PDF

A Study of Running Safety According to the Section Shape of an F10/F12 Turnout (F10/F12 분기기에서의 단면 형상별 주행안전성 연구)

  • Kim, Sung-Jong;Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.591-598
    • /
    • 2011
  • When a vehicle passes through a turnout, it is necessary for the changes in lateral force to be minimized to ensure the safe running of the vehicle. Therefore, the analysis of the interaction between the vehicle and the turnout is crucial for estimating the lateral force and the derailment coefficient on the turnout. In this paper, the effect of the variation of section shape on the running safety of a vehicle was investigated by changing the shape of the point part and the crossing part. The tongue rail length of the point part and nose rail height of the crossing part of an F10/F12 turnout were changed, and the running safety of the vehicle was analyzed.

Analysis of Running Safety According to Changes of Guard Rail Length on F10/F12 Turnout (F10/F12 분기기에서의 가드레일 길이 변화에 따른 주행안전성 해석)

  • Eom, Beom Gyu;Kim, Sung Jong;Lee, Seung Il;Lee, Hi Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.723-730
    • /
    • 2013
  • The speed-limit regulation on a turnout is the main factor inhibiting the speed-up of conventional lines. The specified speed for a train moving through a turnout system is lower than that for a train traveling over the general track. This is done to ensure the running safety of a railway vehicle moving through a turnout. In this study, the shape change example of the guard rail component of a turnout in the Daegu Metropolitan Transit Corporation (DTRO) system was studied. A theoretical examination of the geometrical interaction formula according to wheel/rail shape at the turnout was conducted. Running safety analysis by changing the length of the guard rail on the F10/F12 turnout using the developed analysis techniques (by VI-Rail) was achieved, and the effect on railway safety was examined accordingly.

A Study on the Optimization of Suspension Characteristics for Improving Running Safety of Railway Vehicle (철도차량 주행안전성 향상을 위한 현가장치 최적화 연구)

  • Lee, Young-Yeob;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.909-914
    • /
    • 2009
  • A suspension is the most prior apparatus to decide vehicle's running safety and ride comfort, also the suspension stiffness is the most important parameter for the designing of the vehicle. Providing the strong stiffness with the primary suspension in order to improve the running safety with high speed, but it causes a problem with a curve running performance of a railway vehicle. Therefore, many studies deal with the optimal value of suspension stiffness. In this paper, we aim to optimize the suspension system to improve running safety by varying stiffness values of railway vehicle suspension. We have proceeded an analysis by design variables which are position, length, width, stiffness and damping coefficients of primary and secondary suspension to optimize the suspension characteristics. As a result of the optimization, we verified that the derailment coefficients of inside and outside of wheel are decreased in comparison with initial model.

Analysis of Running Safety and Ride Comfort According to the Shape of Transition Curve (완화곡선형상별 차량주행안전성 및 승차감 분석)

  • Choi, Il-Yoon;Um, Ju-Hwan;Kim, Man-Cheol;Park, Chan-Kyoung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.509-515
    • /
    • 2010
  • Primary function of a transition curve is to accomplish gradual transition from the straight to circular curve, so that curvature changes from zero to a finite value. The transition curve enhances the running safety and ride comfort of the vehicle in curve. There are a couple of transition curve such as clothoid, cubic parabola and cosinusoidal curve, etc. In this study, running behaviors of cubic parabola and cosinusoidal curve were investigated and compared by numerical analysis result using VAMPIRE program. Ride comforts for an individual transition curve were evaluated for each transition curve and running behavior and safety were also evaluated to compare the capacity of transition curves.

A Study on the Assessment of Running Safety of Railway Vehicle passing through Curve (곡선부 통과 열차의 주행안전성 평가에 관한 연구)

  • Park, Kwang-Soo;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.492-498
    • /
    • 2007
  • For the running safety assessment of Saemaul train passing through curves, an analysis model for multibody system has been developed. By using this model and ADAMS/Rail, sensitivity analyses depending on the variation of parameters related to the derailment coefficients have been conducted. At low speed, the derailment coefficient and the unload ratio of right wheel showed higher than left wheel, while those of left wheel showed higher than right wheel at high speed. According to decrease of curve radius, the derailment coefficient and the unload ratio were increased. When the length of transition curve was increased, the derailment coefficient was increased but there was no change on the unload ratio. According to the increase of cant, the derailment coefficient and the unload rate were increased.