• Title/Summary/Keyword: 중금속

Search Result 3,655, Processing Time 0.071 seconds

Studies on the Electrochemical Behavior of Heavy Lanthanide Ions and the Synthesis, Characterization of Heavy Metal Chelate Complexes(II). Synthesis and Characterization of Eight Coordinate Tungsten(IV) and Cerium(IV) Chelate Complex (무거운 란탄이온의 전기화학적 거동 및 중금속이온의 킬레이트형 착물의 합성 및 특성에 관한 연구(제2보). 8배위 텅스텐(IV)과 세륨(IV)의 킬레이트형 착물의 합성 및 특성)

  • Kang, Sam Woo;Chang, Choo Wan;Suh, Moo Yul;Lee, Doo Youn;Choi, Won Jong
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.41-49
    • /
    • 1992
  • An attempt was made to prepare two series of tetrakis eight-coordinate tungsten(IV) and cerium(IV) complexes containing the 5,7-dichloro-8-quinolinol(N:${\pi}$-acceptor atom, O:${\pi}$-donor atom) ligand. Tetrakis eight-coordinate tungsten(IV) complex of 2-mercaptopyrimidine(N:${\pi}$-acceptor atom, S:${\pi}$-donor atom) ligand have also been prepared. And the new series of mixed-ligand eight-coordinate tungsten(IV) complexes containing bidentate ligands 5,7-dichloro-8-quinolinol and 2-mercaptopyrimidine have been prepared, isolated by TLC and characterized. $W(dcq)_4$, $W(dcq)_3(mpd)_1$, $W(dcq)_2(mpd)_2$, $W(dcq)_1W(dcq)_3$ and $W(mpd)_4$ complexes of MLCT absorption band appeared to 710nm, 680nm, 625nm, 581nm, and 571nm(${\varepsilon}\;max={\sim}>{\times}10^4$) on low-energy respectively. The specific absorption wave length of $Ce(dcq)_4$ is appeared 520nm(${\varepsilon}\;max={\sim}>{\times}10^4$). The Chemical shift values by proton of coordinated position appeared to $W(dcq)_4$ [$H_2:8.9ppm$]; $W(dcq)_3(mpd)_1$ [$H_2:9.3$,$H_6:9.2ppm$]; $W(dcq)_2(mpd)_2$ [$H_2:9.7$,$H_6:8.95ppm$]; $W(dcq)_1(mpd)_3$ [$H_2:9.8$,$H_6:9.4ppm$]; $W(mpd)_4$ [$H_6:8.8ppm$]; $Ce(dcq)_4$ [$H_2:9.3ppm$] with $^1H$-NMR. The inertness of mixed-ligand eight coordinate tungsten(IV) complexes have been investigated by UV-Vis. spectroscopic method in dimethylsulfoxide at $90^{\circ}C$. The inertness of $W(dcq)_n(mpd)_{4-n}$ complexes showed the following order, $W(dcq)_3(mpd)_1;k_{obs.}=3.8{\times}10^{-6}$ > $W(mpd)_4;k_{obs.}=6.0{\times}10^{-6}$ > $W(dcq)_4;k_{obs.}=6.4{\times}10^{-6}$ > $W(dcq)_2(mpd)_2;k_{obs.}=7.0{\times}10^{-6}$ > $W(dcq)_1(mpd)_3;k_{obs.}=1.7{\times}10^{-5}$, which showed the inertness until 16days, 10days, 9days, 8days, and 4days. The $W(mpd)_4$ is very inert as $k_{obs.}=3.6{\times}10^{-6}$(16days) in xylene at $90^{\circ}C$ and $k_{obs.}=6.0{\times}10^{-6}$(10days) in DMSO at $90^{\circ}C$.

  • PDF

Processing of Intermediate Product(Krill Paste) Derived from Krill (크릴을 원료로 한 식품가공용 중간소재(크릴페이스트) 가공에 관한 연구)

  • LEE Eung-Ho;CHA Yong-Jun;OH Kwang-Soo;Koo Jae-Keun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.195-205
    • /
    • 1985
  • As a part of investigation to use the Anatrctic krill, Euphausia superba, more effectively as a food source, processing conditions, utilizations and storage stability of krill paste (intermediate product of krill) were examined and also chemical compositions of krill paste were analyzed. Frozen raw krill was chopped, agitated with $25\%$ of water to the minced krill and then centrifuged to separate the liquid fraction from the residue. This liquid fraction was heated at $98^{\circ}C$ for 20 min. to coagulate the proteins of krill, and it was filtered to separate the protein fraction. Krill paste was prepared with grinding the protein fraction, adding $0.2\%$ of polyphosphate and $0.3\%$ of sodium erythorbate to the krill paste for enhancing of functional properties and quality stability. The krill paste was packed in a carton box, and then stored at $-30^{\circ}C$. Chemical compositions of krill paste were as follows : moisture $78\%$, crude protein $12.9\%$, crude lipid $5.9\%$, and the contents of hazardous elements of krill paste as Hg 0.001 ppm, Cd 1.15 ppm, Zn 9.1 ppm, Pb 0.63 ppm and Cu 11.38ppm were safe for food. The amino acid compositions of krill paste showed relatively high amount of taurine, glutamic acid, aspartic acid, leucine, lysine and arginine, which occupied $55\%$ of total amino acid and also taurine, lysine, glycine, arginine and proline were occupied $65\%$ of total free amino acid. Fatty acid compositions of krill paste consist of $32.4\%$ of saturated fatty acid, $29.6\%$ of monoenoic acid and $38.0\%$ of polyenoic acid, and major fatty acids of product were eicosapentaenoic acid ($17.8\%$), oleic acid ($16.9\%$), palmitic acid ($15.3\%$), myristic acid ($8.7\%$) and docosahexaenoic acid ($8.4\%$). In case of procssing of fish sausage as one of experiment for krill paste use, Alaska pollack fish meat paste could be substituted with the krill paste up to $30\%$ without any significant defect in taste and texture of fish sausage, and the color of fish sausage could be maintained by the color of krill paste. Judging from the results of chemical and microbial experiments during frozen storage, the quality of krill paste could be preserved in good condition for 100 days at $-39^{\circ}C$.

  • PDF

Improvement of Certification Criteria based on Analysis of On-site Investigation of Good Agricultural Practices(GAP) for Ginseng (인삼 GAP 인증기준의 현장실천평가결과 분석에 따른 인증기준 개선방안)

  • Yoon, Deok-Hoon;Nam, Ki-Woong;Oh, Soh-Young;Kim, Ga-Bin
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.40-51
    • /
    • 2019
  • Ginseng has a unique production system that is different from those used for other crops. It is subject to the Ginseng Industry Act., requires a long-term cultivation period of 4-6 years, involves complicated cultivation characteristics whereby ginseng is not produced in a single location, and many ginseng farmers engage in mixed-farming. Therefore, to bring the production of Ginseng in line with GAP standards, it is necessary to better understand the on-site practices of Ginseng farmers according to established control points, and to provide a proper action plan for improving efficiency. Among ginseng farmers in Korea who applied for GAP certification, 77.6% obtained it, which is lower than the 94.1% of farmers who obtained certification for other products. 13.7% of the applicants were judged to be unsuitable during document review due to their use of unregistered pesticides and soil heavy metals. Another 8.7% of applicants failed to obtain certification due to inadequate management results. This is a considerably higher rate of failure than the 5.3% incompatibility of document inspection and 0.6% incompatibility of on-site inspection, which suggests that it is relatively more difficult to obtain GAP certification for ginseng farming than for other crops. Ginseng farmers were given an average of 2.65 points out of 10 essential control points and a total 72 control points, which was slightly lower than the 2.81 points obtained for other crops. In particular, ginseng farmers were given an average of 1.96 points in the evaluation of compliance with the safe use standards for pesticides, which was much lower than the average of 2.95 points for other crops. Therefore, it is necessary to train ginseng farmers to comply with the safe use of pesticides. In the other essential control points, the ginseng farmers were rated at an average of 2.33 points, lower than the 2.58 points given for other crops. Several other areas of compliance in which the ginseng farmers also rated low in comparison to other crops were found. These inclued record keeping over 1 year, record of pesticide use, pesticide storages, posts harvest storage management, hand washing before and after work, hygiene related to work clothing, training of workers safety and hygiene, and written plan of hazard management. Also, among the total 72 control points, there are 12 control points (10 required, 2 recommended) that do not apply to ginseng. Therefore, it is considered inappropriate to conduct an effective evaluation of the ginseng production process based on the existing certification standards. In conclusion, differentiated certification standards are needed to expand GAP certification for ginseng farmers, and it is also necessary to develop programs that can be implemented in a more systematic and field-oriented manner to provide the farmers with proper GAP management education.

Limno-Biological Investigation of Lake Ok-Jeong (옥정호의 육수생물학적 연구)

  • SONG Hyung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-25
    • /
    • 1982
  • Limnological study on the physico-chemical properties and biological characteristics of the Lake Ok-Jeong was made from May 1980 to August 1981. For the planktonic organisms in the lake, species composition, seasonal change and diurnal vertical distribution based on the monthly plankton samples were investigated in conjunction with the physico-chemical properties of the body of water in the lake. Analysis of temperature revealed that there were three distinctive periods in terms of vertical mixing of the water column. During the winter season (November-March) the vertical column was completely mixed, and no temperature gradient was observed. In February temperature of the whole column from the surface to the bottom was $3.5^{\circ}C$, which was the minimum value. With seasonal warming in spring, surface water forms thermoclines at the depth of 0-10 m from April to June. In summer (July-October) the surface mixing layer was deepened to form a strong thermocline at the depth of 15-25 m. At this time surface water reached up to $28.2^{\circ}C$ in August, accompanied by a significant increase in the temperature of bottom layer. Maximum bottom temperature was $r5^{\circ}C$ which occurred in September, thus showing that this lake keeps a significant turbulence Aehgh the hypolimnial layer. As autumn cooling proceeded summer stratification was destroyed from the end of October resulting in vertical mixing. In surface layer seasonal changes of pH were within the range from 6.8 in January to 9.0 in guutuost. Thighest value observed in August was mainly due to the photosynthetic activity of the phytoplankton. In the surface layer DO was always saturated throughout the year. Particularly in winter (January-April) the surface water was oversaturated (Max. 15.2 ppm in March). Vertical variation of DO was not remarkable, and bottom water was fairly well oxygenated. Transparency was closely related to the phytoplankton bloom. The highest value (4.6 m) was recorded in February when the primary production was low. During summer transparency decreased hand the lowest value (0.9 m) was recorded in August. It is mainly due to the dense blooming of gnabaena spiroides var. crassa in the surface layer. A. The amount of inorganic matters (Ca, Mg, Fe) reveals that Lake Ok-Jeong is classified as a soft-water lake. The amount of Cl, $NO_3-N$ and COD in 1981 was slightly higher than those in 1980. Heavy metals (Zn, Cu, Pb, Cd and Hg) were not detectable throughout the study period. During the study period 107 species of planktonic organisms representing 72 genera were identified. They include 12 species of Cyanophyta, 19 species of Bacillariophyta, 23 species of Chlorophyta, 14 species of Protozoa, 29 species of Rotifera, 4 species of Cladocera and 6 species of Copepoda. Bimodal blooming of phytoplankton was observed. A large blooming ($1,504\times10^3\;cells/l$ in October) was observed from July to October; a small blooming was present ($236\times10^3\;cells/l$ in February) from January to April. The dominant phytoplankton species include Melosira granulata, Anabaena spiroides, Asterionella gracillima and Microcystis aeruginota, which were classified into three seasonal groups : summer group, winter group and the whole year group. The sumner group includes Melosira granulate and Anabaena spiroides ; the winter group includes Asterionella gracillima and Synedra acus, S. ulna: the whole year group includes Microtystis aeruginosa and Ankistrodesmus falcatus. It is noted that M. granulate tends to aggregate in the bottom layer from January to August. The dominant zooplankters were Thermocpclops taihokuensis, Difflugia corona, Bosmina longirostris, Bosminopsis deitersi, Keratelle quadrata and Asplanchna priodonta. A single peak of zooplankton growth was observed and maximum zooplankton occurrence was present in July. Diurnal vertical migration was revealed by Microcystis aeruginosa, M. incerta, Anabaena spiroides, Melosira granulata, and Bosmina longirostris. Of these, M. granulata descends to the bottom and forms aggregation after sunset. B. longirostris shows fairly typical nocturnal migration. They ascends to the surface after sunset and disperse in the whole water column during night. Foully one species of fish representing 31 genera were collected. Of these 13 species including Pseudoperilnmpus uyekii and Coreoleuciscus splendidus were indigenous species of Korean inland waters. The indicator species of water quality determination include Microcystis aeruginosa, Melosira granulata, Asterionelta gracillima, Brachionus calyciflorus, Filinia longiseta, Conochiloides natans, Asplanchna priodonta, Difflugia corona, Eudorina elegans, Ceratium hirundinella, Bosmina longirostris, Bosminopsis deitersi, Heliodiaptomus kikuchii and Thermocyclops taihokuensis. These species have been known the indicator groups which are commonly found in the eutrophic lakes. Based on these planktonic indicators Lake Ok-Jeong can be classified into an eutrophic lake.

  • PDF

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.