• Title, Summary, Keyword: 초정밀 무심 연삭기

Search Result 13, Processing Time 0.097 seconds

콘크리트 충진 베드를 적용한 초정밀 무심 연삭기의 구조 특성 해석

  • 김석일;조재완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.318-318
    • /
    • 2004
  • 원통 연삭기(cylindrical grinding machine)는 원통형 공작물을 센터나 척으로 지지하면서 연삭 공정을 수행하기 때문에 연속적인 작업이 어렵지만, 무심 연삭기(centerless grinding machine)는 원통형 공작물을 받침판으로 지지하면서 연삭 숫돌(grinding wheel)과 조정 숫돌(regulating wheel)로 연삭 공정과 축방향 이송을 동시에 수행하기 때문에 연속적인 작업이 가능하다. 특히 고정밀 부품을 작업자의 숙련도와 무관하게 고능률적으로 가공할 수 있는 무심 연삭기는 구름 베어링, 축, 피스톤 핀 등과 같은 고정밀 기계류 부품들을 대량 연삭하기 위한 용도로 많이 사용되어 왔다.(중략)

  • PDF

페룰가공용 다이아몬드 드레싱 장치의 특성에 관한 연구

  • 천영재;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.266-266
    • /
    • 2004
  • 광통신 커넥터 핵심 부품인 페룰(Ferrule)은 광통신의 주요한 커넥터 부품으로 사용되며 슬리브내에서 페룰을 서로 맞대어 광섬유론 정렬하는데 사용이 된다. 광섬유의 맞대기가 정확하고 광학 특성에 영향을 주지 않도록 하기 위해서는 페룰의 외경과 표면의 초정밀 가공이 주요한 품질 특성이 된다. 페룰은 고경도 난삭재의 소구경 세라믹 재질이며 이의 가공을 위해서는 다이아몬드 연삭숫돌을 이용한 무심연삭(centerless grinding) 장치를 사용한다.(중략)

  • PDF

Structural Characteristic Analysis of a High-Precision Centerless Grinding Machine with Concrete-Filled Bed (콘크리트 층진 베드를 적용한 초정밀 무심 연삭기의 구조 해석)

  • Kim Seok Il;Cho Jae Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.172-179
    • /
    • 2005
  • A high-precision centerless grinding machine has been recognized as a core equipment performing the finish outer-diameter grinding process of ferrules which are widely used as fiber optic connectors. In this study, in order to realize the high-precision centerless grinding machine, the structural characteristic analysis and evaluation are carried out on the virtual prototype consisted of the steel bed, hydrostatic GW and RW spindle systems, hydrostatic RW feed mechanism, RW swivel mechanism, and on-machine GW and RW dressers. The loop stiffnesses of centerless grinding machine are estimated based on the relative deformations between GW and RW caused by the grinding forces. And the simulated results illustrate that the concrete-filled bed has the considerable effect on the improvement of the structural stiffness of centerless grinding machine.

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 열 특성 해석)

  • Kim, Seo-Kil;Cho, Jae-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1
    • /
    • pp.193-200
    • /
    • 2006
  • To perform the finish grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. The high-precision centerless grinding machine is consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine has very stable thermal characteristics.

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 열 특성 해석)

  • Kim S.I.;Cho J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.90-95
    • /
    • 2005
  • To perform the finish outside-diameter grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed, has very stable thermal characteristics.

  • PDF

Structural and Thermal Sensitivity Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 구조적 및 열적 민감도 해석)

  • Kim, Seok-Il;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12
    • /
    • pp.1634-1641
    • /
    • 2006
  • High-precision centerless grinding machines are emerging as a means of finishing the outer diameter grinding process required for ferrules, which are widely used as fiber optic connectors. In this study, a sensitivity analysis for structural and thermal characteristics was carried out using a virtual prototype of a centerless grinding machine to realize systematic design technology and performance improvements required to manufacture ferrules. The prototype consisted of a concrete-filled bed, hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW table feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The results of the structural sensitivity analysis illustrated that the vertical stiffness of hydrostatic guideway for the RW table feed system greatly influenced the horizontal loop stiffness, and the results of the thermal sensitivity analysis illustrated that the heat generation rates at hydrostatic bearings and belt pulley greatly influenced the temperature rise of hydrostatic bearings and the deviation of thermal displacement between GW and RW.

Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석)

  • Kim, Seok-Il;Lee, Won-Jae;Cho, Sun-Joo
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.1008-1013
    • /
    • 2003
  • This paper concerns the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system consisted of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

  • PDF

Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석)

  • Kim, Seok-Il;Park, Chun-Hong;Cho, Soon-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.896-903
    • /
    • 2004
  • This paper proposes the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high-precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system composed of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

The Development of Ultra-precision Centerless Grinding Machine (초정밀 CNC 센터리스 연삭기 개발)

  • Cho S.J.;EBIHARA EBIHARA;Yoon J.S.;Cho C.R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.557-558
    • /
    • 2006
  • In this study, the ultra precision centerless grinder for ferrule grinding was designed. As the good-qualified ferrule is required a precise and fine grinding, grinding machine for ferrule must have a high accuracy and a sufficient stiffness. The centerless grinder is composed of the high damping concrete bed, grinding wheel spindle unit, regulating wheel spindle unit, feeding table and dressing unit. For a newly developed centerless grinder, hydrostatic system with high precision feeding and high stiffness was proposed.

  • PDF