• Title, Summary, Keyword: 충돌 해석

Search Result 967, Processing Time 0.044 seconds

Automobile Collision Reconstruction Using Post-Impact Velocities and Crush Profile (충돌 후 속도와 충돌 변형으로부터 자동차 충돌 재구성)

  • 한인환
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.107-115
    • /
    • 2000
  • We suggest a method which solves the planar, two vehicle collision reconstruction problem. The method based on the Principle of impulse and momentum determines the pre-impact velocity components from Post-impact velocity components, vehicle Physical data and collision geometry. A novel feature is that although the impact coefficients such as the restitution coefficient and the impulse ratio are unknown, the method can estimate automatically the coefficients and calculate the pre-impact velocity components. This reverse calculation is important for vehicle accident reconstruction, since the pre-impact velocities are unknown and Post-impact Phase is the starting Point in a usual collision analysis. However. an inverse solution is not always Possible with the analytical rigid-body impact model. Mathematically, one does not exist under the common velocity condition. On the other hand, our method has a capability of reverse calculation under the condition if the absorbed energy during the collision process can be estimated using the crush profile. To validate the developed collision reconstruction a1gorithm, we use car-to-car collision test results. The analysis and experimental results agree well in the impact coefficients and the Pre-impact velocity components.

  • PDF

Analysis of Ship Collision Behavior of Pile Supported Structure (파일지지 구조물의 선박 충돌거동에 대한 해석)

  • Bae, Yong Gwi;Lee, Seong Lo
    • Journal of The Korean Society of Civil Engineers
    • /
    • v.28 no.3A
    • /
    • pp.323-330
    • /
    • 2008
  • The ship collision analysis of steel pile group as protection system of bridge in navigable waterways was performed to analyze the structural characteristics of protective structure during ship collision. The analysis encompassed finite element modeling of ship and pile, modeling of material non-linearity, hard impact analysis, displacement-based analysis and soft impact analysis for collision scenarios. Through the analysis of hard impact with a rigid wall, impact load for each collision type of ship bow was estimated. In the displacement-based analysis the estimate of energy which protection system can absorb within its maximum horizontal clearance so as to secure bridge pier from vessel contact during collision was performed. Soft impact analysis for various collision scenarios was conducted and the collision behaviors of vessel and pile-supported protection system were reviewed for the design of protection system. The understanding of the energy dissipation mechanism of pile supported structure and colliding vessel would give us the optimized design of protective structure.

  • PDF

Behavior characteristics of Pile-type vessel collision protective structure (파일형 선박충돌방호공의 거동특성)

  • Lee, Jeong-Woo;Park, Jun-Seok;Lee, Gye-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.433-436
    • /
    • 2010
  • 본 논문에서는 파일형 선박충돌 방호공에 선박이 충돌하였을 때 방호공의 거동을 해석하였다. 방호공의 구조는 상부슬래브, RCP 말뚝 및 이를 지지하는 지반은 비선형 지반스프링으로 모델링 하였다. 상부슬래브 8절점요소로 모델링 하였으며 철근과 콘크리트로 구성되어있다. RCP 말뚝은 철근망과 충진콘크리트로 구성되어있으며 충돌 시 파괴거동을 표현할 수 있는 Damaged Plasticity로 모델을 사용하였고 Shell 요소로 모델링 하였다. 선박충돌 시 선박의 강성에 따른 거동 특성을 파악하기 위해 선박을 강체모델과 실제모델에 대한 해석을 수행하였다. 선박과 교량의 충돌은 정면충돌로 고려하였으며, 충돌속도는 3.3m/sec로 가정하였다. 선박과 방호공과의 충돌 해석은 비선형 해석 프로그램인 ABAQUS/Explicit을 이용하여 수행하였으며, 이를 통하여 선박 충돌 시 방호공의 에너지 거동을 분석하였다. 해석결과 선박의 강성이 커질수록 슬래브의 변형 및 소산 에너지량이 커지는 것을 확인할 수 있었다.

  • PDF

Ultimate capacity evaluation of Vessel protective structure by quasi-static analysis (의사정적해석을 통한 선박충돌방호공의 극한성능평가)

  • Lee, Gye-Hee;Hong, Kwan-Young;Kim, Se-Jeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.731-734
    • /
    • 2011
  • 본 연구에서는 강재로 구성된 선박충돌방호공의 최대방호능력을 산정하기 위하여 선박과 충돌방호공을 모델링하고 충돌거동을 해석하였다. 이러한 비선형충돌해석은 매우 큰 요소망과 고도의 비선형성을 려해야하기 때문에 이의 해석비용이 일반적인 해석에 비하여 매우 크므로 해석의 경제성을 확보하기 의사정적해석방법을 이용하여 해석을 수행하였다. 이 과정에서 효율적인 해석을 위한 수치 해석기법이 추가되었다. 해석결과 얻어진 선박과 방호공의 에너지소산곡선을 바탕으로 충돌선박이 교량하부구조에 도달하는 시점을 추정하고 이를 바탕으로 대상선박의 최대충돌속도를 산정하였다.

  • PDF

The Study for the Evaluation of the Ship Collision Force to the Substructure of Bridges (교각에 작용하는 선박의 충돌력 산정에 대한 연구)

  • Hong, Kwan-Young;Lee, Gye-Hee;Chung, Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.738-741
    • /
    • 2010
  • 최근 국내에서 해상교량 건설이 증가하면서 교량에 충돌하는 선박의 충돌력에 대한 관심도 증가하지만 선박충돌력에 대한 국내 기준은 AASHTO LRFD에 근거를 두고 있는 실정이다. AASHTO LRFD에 의한 선박충돌력은 Woisin의 평균충돌력 개념에 바탕을 두고 있으며, 충돌속도가 증가함에 따라 AASHTO LRFD에서 제시하는 충돌력의 변화곡선을 따르고 있다. 하지만 AASHTO에서 제시된 충돌력 변화곡선은 선박의 최대충돌력 변화곡선과 같이 선형적 변화를 보이는 반면, 본 선박 충돌해석 결과의 평균충돌력은 최대충돌력의 선형적 변화거동과 일치하지 않는 것으로 나타났다. 따라서 본 논문에서는 선박의 비선형 충돌해석을 통하여 AASHTO LRFD에 의해 산정되는 선박충돌력의 부적절성을 거론하였다.

  • PDF

세라믹 재료의 고속 충돌 해석을 위한 operator-splitting 유한 요소해석 기술

  • Ju, Byeong-Yun;Hwang, Chan;Jeong, Dong-Taek
    • Journal of the KSME
    • /
    • v.50 no.4
    • /
    • pp.42-45
    • /
    • 2010
  • 초속 수 킬로미터에 달하는 탄자 충돌 해석과 같은 고속 충돌 문제는 매우 짧은 작용시간, 지배적인 과도 응답 상태, 관성효과의 중요성 등을 특징으로 들 수 있다. 이 글에서는 고속 충돌 해석을 위한 삼각형/사면체 요소를 적용한 operator-splitting 유한 요소 해석 기술에 대해 소개하였다.

  • PDF

A Comparison Study of Direct Impact Analysis of Vehicle to Concrete Pier and In-Direct Impact Analysis using Load-Time History Functions (차량과 콘크리트 교각의 직접충돌해석법과 충돌하중이력곡선을 이용한 간접충돌해석법 비교연구)

  • Kim, WooSeok;Kim, Kyeongjin;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.533-542
    • /
    • 2014
  • In design standards such as AASHTO LRFD and Korea Highway Bridge Design, the dynamic behaviors under the impact loading has not been considered and it recommends of using a static force for designing bridge column against vehicle collisions. Accordingly, in this study, models of vehicle collisions to concrete bridge column were developed with various boundary conditions in order to take into account dynamic behaviour of the column. Cargo trucks of 10tons, 16tons and 38tons were selected and a typical type of concrete bridge pier column along the Kyungbu highway in Korea was selected for this study. Results from this study indicate that the static load specified in the design standards are too small compared to results obtained in this study. It was also found that a consideration of the bridge superstructure allowed smaller damages of concrete bridge pier column under truck impact loadings. Furthermore, a comparison study of direct impact analysis of vehicle to bridge-column with in-direct impact analysis using load-time history functions was performed. The in-direct impact analysis shows that the use of load-time history graph improves the computational cost up to 92% and predict the behaviors of the bridge column under the impact loadings well. The obtained load-time history graph could be easily applied to several existing models.

Introduction of a G7 project titled as software development of computational safety analysis for automobile crashworthiness (G7 전산응용 안전도 해석기술 과제 소개)

  • 박경진;임재문
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.36-49
    • /
    • 1996
  • 본 고에서는 정면충돌.측면충돌 등과 같은 각종 충돌상황시의 승객보호기준과 모델링 및 해석결과 등을 승객거동해석결과와 차체충돌해석결과를 연계하여 이를 초기설계에 이용할 수 있는 방안을 제시하고자 한다. 차체충돌해석 소프트웨어 개발에 관해서는 계속되는 글에서 설명될 것이다.

  • PDF

Collision Behaviors Analysis of Sandwich Concrete Panel for Outer Shell of LNG Tank (LNG외조를 구성하는 샌드위치 콘크리트 패널의 충돌거동해석)

  • Lee, Gye Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.485-493
    • /
    • 2017
  • In this study, the collision analysis of SCP(Sandwich Concrete Panel) composing the outer tank of LNG storage was performed and its collision behavior was analyzed. For the same collision energy value proposed in BS7777 code, the collision conditions are composed by using two types of missiles and various collision speeds. Nonlinear dynamic analysis models were constructed to perform numerical analysis on the various collision conditions. Also, the collision behavior was analyzed assuming that the second collision with the same collision energy occurs at the same point after the first collision. As a result of the analysis, it was found that with smaller missile and low collision speed had caused larger deformation. The collision energy dissipated in ratio of about 6: 4 in the outer steel plate and the inner filling concrete. In the results of double collision analysis, the final collisional deformation was dominated by the size of the second missile, and the amount of deformation due to the second collision was smaller than that of the first collision because of the membrane behavior of the steel plates. In the offset double collision cases, the largest deformation occurs at the secondary collision point regardless of the offset distance.

Collision Analysis between FRP Fishing Boats According to Various Configurations (여러 가지 충돌 상황에 따른 FRP 어선 간의 충돌 해석)

  • Jang, In-Sik;Kim, Yong-Seop;Kim, Il-Dong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.253-262
    • /
    • 2006
  • In this paper, collision analysis is carried out between two FRP fishing boats. A computer simulation with finite element method is used to accomplish this objective. At first, a detailed geometric model of the boat is constructed using 3-D CAD program. The formation of a finite element from a geometric data of the boats is carried out using HYPERMESH that is the commercial software for mesh generation and post processing. Twelve collision configurations are established by combining two kinds of contact angle($90^{\circ},\;135^{\circ}$) and three different speed(5, 10, 15knot) for small and large boats. Collision analysis is accomplished using DYNA3D. Stress distribution and deformation shape are investigated for each collision condition. In general, $90^{\circ}$ collision angle generate larger stress than $135^{\circ}$ case and the collision for two moving boats showed larger maximum stress than the case that one is moving and the other is stationary. When analysis is carried out until 150ms contact parts of two boats are broken for 10 and 15knot collision speed, in which maximum stress is larger than ultimate strength of the material.

  • PDF