• Title, Summary, Keyword: 충진재

Search Result 233, Processing Time 0.066 seconds

Development of a Method for Analyzing the Nicotine Content in Synthetic Flavoring Substances as Unauthorized E-cigarette Liquid by Using HPLC (전자담배 액상 충진제와 유사한 합성착향료 중 니코틴의 HPLC 분석법 개발)

  • Kim, Jae-Young;Lee, Sang-Mok;Chang, Moon-Ik;Cho, Yoon-Jae;Lee, Han-Jin;Chae, Young-Sik;Rhee, Gyu-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.693-699
    • /
    • 2013
  • A simple, sensitive, and specific method for quantifying the nicotine content of synthetic favoring substances (SFS) was developed using high performance liquid chromatography (HPLC) with a photo-diode array detector (PDA). Nicotine was extracted from SFS samples by using an acid-base liquid-liquid extraction method with dichloromethane and distilled water. The nicotine content was quantified by HPLC/PDA (261.9 nm) with a $C_{18}$ column under a gradient of 10% acetonitrile with 20 mM ammonium formate (ammonia solution adjusted to pH 8.7) to 100% acetonitrile. The calibration curve, analyzed from concentration standards between 0.1 to 2 mg/L, presented linearity with a correlation coefficient ($r^2$)>0.9999. The limit of quantitation (LOQ) of nicotine in SFS was 0.4 mg/kg, and the average recoveries ranged from 76.4% to 96.3%. The repeatability of measurements, expressed as the coefficient of variation (CV%), ranged from 1.74 to 5.12%. This newly developed method for nicotine quantification in SFS can be considered an analytical method with an acceptable level of sensitivity and repeatability.

Element Dispersion and Wallrock Alteration from Samgwang Deposit (삼광광상의 모암변질과 원소분산)

  • Yoo, Bong-Chul;Lee, Gil-Jae;Lee, Jong-Kil;Ji, Eun-Kyung;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.177-193
    • /
    • 2009
  • The Samgwang deposit consists of eight massive mesothermal quartz veins that filled NE and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. The mineralogy and paragenesis of the veins allow two separate discrete mineralization episodes(stage I=quartz and calcite stage, stage II-calcite stage) to be recognized, temporally separated by a major faulting event. The ore minerals are contained within quartz and calcite associated with fracturing and healing of veins that occurred during both mineralization episodes. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and include mainly sericite, quartz, and minor illite, carbonates and chlorite. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.45 to 0.50(0.48$\pm$0.02) and 0.74 to 0.81(0.77$\pm$0.03), and belong to muscovite-petzite series and brunsvigite, respectiveIy. Calculated $Al_{IV}$-FE/(FE+Mg) diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH)_6$=0.0275${\sim}$0.0413, $a2(Mg_5Al_2Si_3O_{10}(OH)_6$=1.18E-10${\sim}$7.79E-7, $a1(Mg_6Si_4O_{10}(OH)_6$=4.92E-10${\sim}$9.29E-7. It suggest that chlorite from the Samgwang deposit is iron-rich chlorite formed due to decreasing temperature from high temperature(T>450$^{\circ}C$). Calculated ${\alpha}Na^+$, ${\alpha}K^+$, ${\alpha}Ca^{2+}$, ${\alpha}Mg^{2+}$ and pH values during wallrock alteration are 0.0476($400^{\circ}C$), 0.0863($350^{\circ}C$), 0.0154($400^{\circ}C$), 0.0231($350^{\circ}C$), 2.42E-11($400^{\circ}C$), 7.07E-10($350^{\circ}C$), 1.59E-12($400^{\circ}C$), 1.77E-11($350^{\circ}C$), 5.4${\sim}$6.4($400^{\circ}C$), 5.3${\sim}$5.7($350^{\circ}C$)respectively. Gain elements(enrichment elements) during wallrock alteration are $TiO_2$, $Fe_2O_3(T)$,CaO, MnO, MgO, As, Ag, Cu, Zn, Ni, Co, W, V, Br, Cs, Rb, Sc, Bi, Nb, Sb, Se, Sn and Lu. Elements(Ag, As, Zn, Sc, Sb, Rb, S, $CO_2$) represents a potential tools for exploration in mesothermal and epithermal gold-silver deposits.

Element Dispersion and Wall-rock Alteration from Daebong Gold-silver Deposit, Republic of Korea (대봉 금-은광상의 모암변질과 원소분산 특성 연구)

  • Yoo, Bong-Chul;Chi, Se-Jung;Lee, Gil-Jae;Lee, Jong-Kil;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.713-726
    • /
    • 2007
  • The Daebong deposit consists of gold-silver-bearing mesothermal massive quartz veins which fill fractures along fault zones($N10{\sim}20^{\circ}W,\;40{\sim}60^{\circ}SW$) within banded gneiss or granitic gneiss of Precambrian Gyeonggi massif. Ore mineralization of the deposit is composed of massive white quartz vein(stage I) which was formed in the same stage by multiple episodes of fracturing and healing and transparent quartz vein(stage II) which is separated by a major faulting event. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and includes mainly sericite, quartz, and minor illite, carbonates and epidote. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.36 to 0.59($0.51{\pm}0.10$) and 0.66 to 0.73($0.70{\pm}0.02$), and belong to muscovite-petzite series and brunsvigite, respectively. Calculated $Al_{IV}-Fe/(Fe+Mg)$ diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH){_6}=0.00964{\sim}0.0291,\;a2(Mg_5Al_2Si_3O_{10}(OH){_6}= 9.99E-07{\sim}1.87E-05,\;a1(Mg_6Si_4O_{10}(OH){_6}=5.61E-07{\sim}1.79E-05$. It suggest that chlorite from the Daebong deposit is iron-rich chlorite formed due to decreasing temperature from $T>450^{\circ}C$. Calculated $log\;{\alpha}K^+/{\alpha}H^+,\;log\;{\alpha}Na^+/{\alpha}H^+,\;log\;{\alpha}Ca^{2+}/{\alpha}^2H^+$ and pH values during wall-rock alteration are $4.6(400^{\circ}C),\;4.1(350^{\circ}C),\;4.0(400^{\circ}C),\;4.2(350^{\circ}C),\;1.8(400^{\circ}C),\;4.5(350^{\circ}C),\;5.4{\sim}6.5(400^{\circ}C)\;and\;5.1{\sim}5.5(350^{\circ}C)$, respectively. Gain elements (enrichment elements) during wallrock alteration are $K_2O,\;P_2O_5,\;Na2O$, Ba, Sr, Cr, Sc, V, Pb, Zn, Be, Ag, As, Ta and Sb. Elements(Sr, V, Pb, Zn, As, Sb) represent a potentially tools for exploration in mesothermal and epithermal gold-silver deposits.