• Title, Summary, Keyword: 캔트

Search Result 25, Processing Time 0.034 seconds

A Study on the Cant Setting in Railway Curve Section (철도곡선구간에 있어서 캔트 설정에 관한 연구)

  • 이남수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 1993
  • The cant has setted up wrong in a part of railway curve sections, occasionally confusion occur in curve maintenance. In this study, it is suggest effective maintenance method in railway curve section about the radius of curvature, cant successive diminution length, according to the investigation of cant value, compare and analysis with straight decrease in order theory.

  • PDF

An Analytical Study on the Effects of the Compensation Cant in case of Superimposition of Vertical and Horizontal Circular Curves (평면원곡선과 종곡선 경합시 보정캔트의 효과에 대한 해석적 연구)

  • Um, Ju-Hwan;Choi, Il-Yoon;Park, Chan-Kyoung;Lee, Seong-Hyeok;Kim, Eun
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.562-568
    • /
    • 2011
  • Superimposition of horizontal and vertical curves occurs frequently owing to geographical conditions. It may hamper train ride comfort and running safety and inflate maintenance costs. In this study, when the horizontal and vertical curves are superimposed, in order to analyze the effects of the compensation cant, the analytical study for running safety, ride comfort and track forces was performed in high speed line. From the analysis results, it was found that it is better to apply the compensation cant at superimposition part.

Analysis of Comfort on Transition Curve based on the Measured Data (실측데이터에 의한 완화곡선 승차감 평가)

  • Choi, Il-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3573-3578
    • /
    • 2015
  • Transition curves are located between curve and straight section in railway. These transition curves are vulnerable to the ride comfort of passengers and safety of a vehicle because lateral acceleration, lateral jerk and roll velocity increase as curvature and cant change along the transition curves. In this paper, ride comfort on the transition curve was calculated on the basis of lateral acceleration and roll velocity measurements. The evaluation of ride comfort was conducted according to the methodology specified in European Standard. The distribution characteristics of the comfort index were investigated for the korean conventional line from the evaluation results. The influence of the curve radius and the vehicle speed on the ride comfort index was also investigated. Finally, the relationship between ride comfort and the rate of cant changes on transition curves was analyzed.

Analysis of Occurrence Tendency of Rail Force According to Running the Hanvit 200 Train on Transition Curve Track (한국형 틸팅차량 완화곡선 주행시 궤도작용력 발생경향 분석)

  • Park, Yong-Gul;Choi, Sung-Yong;Kim, Youn-Tae;Choi, Jung-Youl
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.678-686
    • /
    • 2009
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. Therefore, in this study, the dynamic rail force of the tilting (Hanvit 200), high-speed (KTX) and general (Mugunghwa) vehicle caused by driving in transition curve track was measured. And, it compared the tilting response with the other by using the measured rail force data in transition curve track, and then evaluated probability the range of load fluctuation for the variable dynamic vertical and lateral wheel load. As a result, a range of rail force by occurred a change of cant from the high-speed and general vehicle which had fixed bogie structure was distributed throughout small deviation. Otherwise, in case of the tilting train which was consisted of the pendulum bogie structure was distributed wide range about large deviation by changed of cant.

Study for The Lateral Displacement of Railway Vehicle (철도차량의 횡 변위에 대한 연구)

  • 양희주;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.535-538
    • /
    • 1997
  • Studied in this paper was the lateral displacement of railway vehicle using the multi-body dynamic simulation program (VAMPIRE) and the BASS 501. The lateral displacement of railway vehicle is occurred by thc clearance between wheel flange and rail, the track irregularity, the property of each suspension of vehicle and the cant etc. The results of analysis shown that Vehicle is not interfere with subway platform in any conditions namely the tare and full load condition, the wheel. wear condition and the stationary and running of vehicle.

  • PDF

Comparative Study on Ride Comfort and Optimum Horizontal Curve Conditions for Superimposition of Vertical and Horizontal Curve (종곡선/평면곡선 경합여부에 따른 최적평면선형조건 및 승차감 비교 분석)

  • Um, Ju-Hwan;Choi, Il-Yoon;Yang, Sin-Chu;Lee, Il-Hwa;Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.589-594
    • /
    • 2010
  • Superimposition of horizontal and vertical curves may hamper the ride comfort and running stability of train and largely affect the maintenance costs. However, in many cases, it is not easy to make a track alignment plan because of the geographic conditions or undesirable environmental factors. In this paper, a comparative study on the effect of superimposition of vertical and horizontal curve on the ride comfort and optimum horizontal curve conditions was performed. That is, optimal cant and ride comfort analysis with and without a vertical curve superimposed on the horizontal curve were evaluated. Also the superimposition effect on ride comfort and alignment conditions in high speed zone were evaluated. From the analysis results, it was found that the ride comfort is similar to that at the only horizontal curves when applying the compensation cant for the superimposed site.

Analysis of the Effect of Wind on the Dynamic Behavior of High Speed Train (바람이 고속전철의 동적 안전성에 미치는 영향 분석)

  • 김영국;박찬경;박태원;배대성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.349-356
    • /
    • 2001
  • The dynamic behavior of high speed train is very Important because the railway should be safe and Is satisfied tilth the rode comfort of passengers. The train is composed of many suspension components. such as 1st springs, 1st dampers, 2nd springs and 2nd dampers, that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes, the track conditions and geometry and many environmental factors, such as rain, snow and wind. affect the dynamic behavior of high speed train. This paper reviews the effect of wind and track conditions on the dynamic behavior of high speed train. The VAMPIRE program Is used for this simulation. The result of simulation shows that the high speed train should not be operated when the wind velocity is beyond 34.5 m/sec.

  • PDF

A Study on the Running Characteristic by Rail cant variation (레일 캔트 변화에 따른 주행특성에 관한 연구)

  • Eom, Beom-Gyu;Kim, Young-Gyu;Lee, Seung-Il;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.1142-1147
    • /
    • 2011
  • The rail cant produces a wider bearing area between the wheel and the rail by moving the wheel-rail contact area away from the gauge towards the centre of the railhead, thus improving the wear pattern of the railhead and wheel treads. It is essential to keep the rail cant within the allowable range to ensure optimum track geometry. Neglecting the rail cant geometrical parameters in a track quality evaluation can cause safety of railway vehicle and serviceability problems. In this paper, we examined the effect of the rail cant in general geometry state of the railway track using VI-Rail and analyzed running safety when the railway vehicle passing through curves depending on change of the rail cant and running speed.

  • PDF

Information Modeling of Railway Track using Information Iinkage of Railway Alignment and Alignment-based Objects (철도 선형중심의 객체 정보연계를 통한 철도 궤도부 정보모델 생성 방안)

  • Kwon, Tae Ho;Park, Sang I.;Shin, Min Ho;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.507-514
    • /
    • 2017
  • As BIM has been widely used in the field of architecture, efforts to apply BIM to civil engineering structures are increasing rapidly. Since commercial BIM softwares are focused on building structure, it is difficult to apply to alignment-based civil infrastructures. In this study, we proposed a method to generate an information model that reflects cant by sharing information between alignment-centered modeling tools and BIM authoring tools to manage information of railway track. The railway track modeling process consists of classifying structures into continuous and non-continuous structures, creating continuous structures by alignment-centered modeling tools, and using the shared alignment information to generate information model of the non-continuous structures. Non-continuous structures were generated by an algorithm that calculates the position and rotation information of each structure based on discretized railway alignment and cant information transmitted to the BIM authoring tools. The availabilities of proposed method were studied by applying to the osong test-line. Using the test model, it was shown that the objects were identified, the properties were extracted, and the quantities of each structure were calculated.

Analysis of Factors Influencing upon the Metro Wear Using the Classification and Regression Trees (CART 분석을 이용한 지하철 마모 영향인자 분석)

  • Jeong, Min Chul;Lee, Won Woo;Kim, Jung Hoon;Kong, Jung Sik
    • 한국방재학회:학술대회논문집
    • /
    • /
    • pp.38-38
    • /
    • 2011
  • 일반적으로 레일마모는 열차의 주행안전 및 승차감에 미치는 영향이 크고, 소음 진동의 주요원인으로 작용한다. 또한 레일마모가 발생할 경우 궤도구조의 파괴를 촉진시킴으로써 차량 및 궤도유지보수비를 크게 증가시킨다. 따라서 구간 특성 및 환경 영향 인자 등 현장에서 발생하는 마모 원인을 체계적으로 분석함으로써 마모를 저감할 수 있도록 차량운행 조건과 선로선형 및 궤도구조를 설계하는 것은 중요한 과제이다. CART(Classification And Regression Tree; 분류와 회귀나무) 분석은 패키지화된 좋은 분류 및 예측도구 기법으로 나무의 상위 분리수준에서 일반적으로 나타나는 가장 중요한 입력변수들을 사용하는 등의 입력변수를 선정하는 경우 매우 유용하다. 본 연구에서는 다변수 구간특성 및 환경인자를 고려한 검측 자료 상관관계 분석을 위한 회귀 나무기반 모델(TBM: Tree Based Model) 분석 수행을 위해 지하철 2호선 마모 데이터와 마모 데이터에 영향을 미치는 각종 다변수 구간특성 및 환경인자를 사용하였다. 2호선 지하철의 구간특성 인자 및 환경인자는 레일의 종류, 레일의 위치, 도상, 곡률반경, 캔트 슬랙 및 운행 일수 등으로 구분하였다. 레일의 종류는 ks-50kg과 ks-60kg 두 종류의 레일이 있으며, 레일의 위치는 지상과 지하로 크게 구분할 수 있다. 도상은 콘크리트 도상, 자갈 도상과 일부 구간의 방진상 콘크리트 도상으로 구분할 수 있으며, 곡률반경은 직선구간과 완화곡선 구간 및 최소 250m부터 627m까지 분포된 원 곡선 구간으로 구분할 수 있다. 캔트 간격은 최소 96cm 부터 120cm 간격으로 구분하며, 슬랙은 5~9cm에 분포하고, 운행 기간은 해당 기간 동안 유지보수 이력이 없는 구간을 선정하여 2005년부터 2006년까지 4번에 걸쳐 검측된 지하철 2호선 내선 마모데이터를 사용하였다. 총 X1부터 X7까지 총 7개의 구간특성 또는 환경특성을 영향인자로 선정하였으며, 이러한 영향인자에 의해 결정되는 종속 인자로 Y1인 직마모와 Y2인 측마모를 선정하여 이 중 실질적으로 지하철 궤도의 성능 평가에 주요 판단인자로 사용되는 측마모와 구간특성 및 환경영향인자와의 상관관계 분석을 수행하였다. 해당 마모 데이터가 검측되는 기간 동안 유지보수 이력이 없는 12272 point의 데이터를 검출하였고 CART 프로그램을 이용하여 데이터를 분석하였으며, CART 프로그램의 해석을 위해 종속변수인 직마모량은 각 검측 지점의 마모량에 해당하는 등급으로 변환하여 분석을 수행하였다. 레일의 마모에 영향을 미치는 구간특성 및 환경인자와 종속 변수로 사용된 레일의 마모량 사이의 CART를 이용한 상관관계 분석은 실제 구조물에서 영향인자간의 상관 관계와 유사하며, 추후 연구에서는 이를 바탕으로 하여 정량화된 검측 데이터를 종속변수로 하여 구간특성 또는 환경인자 등 외부 영향인자를 고려한 궤도 검측데이터와의 상관관계 분석을 수행할 계획이다.

  • PDF