• Title, Summary, Keyword: 포아송방정식

Search Result 124, Processing Time 0.038 seconds

Analysis of Threshold Voltage Characteristics for FinFET Using Three Dimension Poisson's Equation (3차원 포아송방정식을 이용한 FinFET의 문턱전압특성분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2373-2377
    • /
    • 2009
  • In this paper, the threshold voltage characteristics have been analyzed using three dimensional Poisson's equation for FinFET. The FinFET is extensively been studing since it can reduce the short channel effects as the nano device. We have presented the short channel effects such as subthreshold swing and threshold voltage for PinFET, using the analytical three dimensional Poisson's equation. We have analyzed for channel length, thickness and width to consider the structural characteristics for FinFET. Using this model, the subthreshold swing and threshold voltage have been analyzed for FinFET since the potential and transport model of this analytical three dimensional Poisson's equation is verified as comparing with those of the numerical three dimensional Poisson's equation.

공분산 구조를 만족하는 다변량 포아송 확률난수 생성

  • Jeong, Hyeong-Cheol;Kim, Dae-Hak;Jeong, Byeong-Cheol
    • Proceedings of the Korean Statistical Society Conference
    • /
    • /
    • pp.147-152
    • /
    • 2005
  • 본 논문에서는 k개의 포아송 확률변수가 서로 종속 되어 있는 다변량 포아송 분포를 따를 때, 주어진 분산-공분산 행렬 구조를 유지하는 다변량 포아송 확률난수 생성방법에 대해 다루었다. 특히, 확률난수를 생성하기 위해 선형방정식을 푸는 두 가지 수치해석 알고리즘을 제안하였으며, Park 등 (1996)의 다변량 베르누이 확률난수 생성에 활용된 알고리즘과의 연관성을 다루었다.

  • PDF

Analysis of Threshold Voltage Characteristics for FinFET Using Three Dimension Poisson's Equation (3차원 포아송방정식을 이용한 FinFET의 문턱전압특성분석)

  • Han, Jihyung;Jung, Hakkee;Lee, Jaehyung;Jeong, Dongsoo;Lee, Jongin;Kwon, Ohshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.928-930
    • /
    • 2009
  • In this paper, the threshold voltage characteristics have been alanyzed using three dimensional Poisson's equation for FinFET. The FinFET is extensively been studing since it can reduce the short channel effects as the nano device. We have presented the short channel effects such as subthreshold swing and threshold voltage for FinFET, using the analytical three dimensional Poisson's equation. We have analyzed for channel length, thickness and width to consider the structural characteristics for FinFET. Using this model, the subthreshold swing and threshold voltage have been analyzed for FinFET since the potential and transport model of this analytical three dimensional Poisson's equation is verified as comparing with those of the numerical three dimensional Poisson's equation.

  • PDF

Potential Distribution Model for FinFET using Three Dimensional Poisson's Equation (3차원 포아송방정식을 이용한 FinFET의 포텐셜분포 모델)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.747-752
    • /
    • 2009
  • Three dimensional(3D) Poisson's equation is used to calculate the potential variation for FinFET in the channel to analyze subthreshold current and short channel effect(SCE). The analytical model has been presented to lessen calculating time and understand the relationship of parameters. The accuracy of this model has been verified by the data from 3D numerical device simulator and variation for dimension parameters has been explained. The model has been developed to obtain channel potential of FinFET according to channel doping and to calculate subthreshold current and threshold voltage.

Image Reconstruction Using Poisson Model Screened from Image Gradient (이미지 기울기에서 선별된 포아송 모델을 이용한 이미지 재구성)

  • Kim, Yong-Gil
    • The Journal of The Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.117-123
    • /
    • 2018
  • In this study, we suggest a fast image reconstruction scheme using Poisson equation from image gradient domain. In this approach, using the Poisson equation, a guided vector field is created by employing source and target images within a selected region at the first step. Next, the guided vector is used in generating the result image. We analyze the problem of reconstructing a two-dimensional function that approximates a set of desired gradients and a data term. The joined data and gradients are able to work like modifying the image gradients while staying close to the original image. Starting with this formulation, we have a screened Poisson equation known in physics. This equation leads to an efficient solution to the problem in FFT domain. It represents the spatial filters that solve the two-dimensional screened Poisson model and shows gradient scaling to be a well-defined sharpen filter that generalizes Laplace sharpening. We demonstrate the results using a discrete cosine transformation based this Poisson model.

The discretization method of Poisson equation by considering Fermi-Dirac distribution (Fermi-Dirac 분포를 고려한 Poisson 방정식의 이산화 방법)

  • 윤석성;이은구;김철성
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.907-910
    • /
    • 1999
  • 본 논문에서는 고 농도로 불순물이 주입된 영역에서 전자 및 정공 농도를 정교하게 구현하기 위해 Fermi-Dirac 분포함수를 고려한 포아송 방정식의 이산화 방법을 제안하였다. Fermi-Dirac 분포를 근사시키기 위해서 Least-Squares 및 점근선 근사법을 사용하였으며 Galerkin 방법을 근간으로 한 유한 요소법을 이용하여 포아송 방정식을 이산화하였다. 구현한 모델을 검증하기 위해 전력 BJT 시료를 제작하여 자체 개발된 소자 시뮬레이터인 BANDIS를 이용하여 모의 실험을 수행한 결과, 상업용 2차원 소자 시뮬레이터인 MEDICI에 비해 최대 4%이내의 상대 오차를 보였다.

  • PDF

Analysis of Subthreshold Swing for Oxide Thickness and Doping Distribution in DGMOSFET (산화막두께 및 도핑분포에 대한 DGMOSFET의 문턱전압이하 스윙분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2217-2222
    • /
    • 2011
  • In this paper, the relationship of potential and charge distribution in channel for double gate(DG) MOSFET has been derived from Poisson's equation using Gaussian function. The relationship of subthreshold swing and oxide thickness has been investigated according to variables of doping distribution using Gaussian function, i.e. projected range and standard projected deviation, The analytical potential distribution model has been derived from Poisson's equation, and subthreshold swing has been obtained from this model for the change of oxide thickness. The subthreshold swing has been defined as the derivative of gate voltage to drain current and is theoretically minimum of 60 mS/dec, and very important factor in digital application. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the relationship of subthreshold swing and oxide thickness have been analyzed according to the shape of doping distribution.

Analysis of Channel Doping Profile Dependent Threshold Voltage Characteristics for Double Gate MOSFET (이중게이트 MOSFET에서 채널도핑분포의 형태에 따른 문턱전압특성분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1338-1342
    • /
    • 2011
  • In this paper, threshold voltage characteristics have been analyzed as one of short channel effects occurred in double gate(DG)MOSFET to be next-generation devices. The Gaussian function to be nearly experimental distribution has been used as carrier distribution to solve Poisson's equation, and threshold voltage has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and threshold voltage has been obtained from this model. Since threshold voltage has been defined as gate voltage when surface potential is twice of Fermi potential, threshold voltage has been derived from analytical model of surface potential. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the threshold voltage characteristics have been considered according to the doping profile of DGMOSFET.

Analysis of Subthreshold Swing for Double Gate MOSFET Using Gaussian Function (가우스함수를 이용한 DGMOSFET의 문턱전압이하 스윙분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.681-684
    • /
    • 2011
  • In this paper, the relationship of potential and charge distribution in channel for double gate(DG) MOSFET has been derived from Poisson's equation using Gaussian function. The subthreshold swing has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and subthreshold swing has been obtained from this model. The subthreshold swing has been defined as the derivative of gate voltage to drain current and is theoretically minimum of 60mS/dec, and very important factor in digital application. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the subthreshold swings have been analyzed according to the shape of Gaussian function.

  • PDF

Analysis of Channel Doping Profile Dependent Threshold Voltage Characteristics for Double Gate MOSFET (이중게이트 MOSFET의 채널도핑분포의 형태에 따른 문턱전압특성분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.664-667
    • /
    • 2011
  • In this paper, threshold voltage characteristics have been analyzed as one of short channel effects occurred in double gate(DG)MOSFET to be next-generation devices. The Gaussian function to be nearly experimental distribution has been used as carrier distribution to solve Poisson's equation, and threshold voltage has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and threshold voltage has been obtained from this model. Since threshold voltage has been defined as gate voltage when surface potential is twice of Fermi potential, threshold voltage has been derived from analytical model of surface potential. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the threshold voltage characteristics have been considered according to the doping profile of DGMOSFET.

  • PDF