• Title, Summary, Keyword: 피로크랙길이

Search Result 11, Processing Time 0.046 seconds

Behavior of Fatigue Crack Propagation from Flaw of Welding Materials (흠함을 갖는 용접재의 피로크랙 전파거동)

  • 송삼홍;홍두표
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.4
    • /
    • pp.289-297
    • /
    • 1984
  • 본 연구에서는 이상과 같은 점을 고려하고 흠함이 존재하기 쉬운 용접부 표면 에 인공적으로 1/4원형에 해당하는 표면피로크랙을 시험편 모서리에 넣고 이러한 시험 편에 굽힘응력을 가하여 다음과 같은 사항들을 고찰하였다. 피로크랙의 표면 및 측 면에서의 전파과정, 피로크랙의 모양비(b/a)의 변화, 피로크랙의 표면 및 측면의 전파 속도와 크랙길이와의 관계등을 알아보았다. 여기에서 크랙의 표면길이란 흠함이 시 험편 모서리에 존재할 때 그것을 기점으로 표면에 전파하는 크랙의 길이를 말하며, 크 랙의 측면길이란 그것을 기점으로 측면의 표면에 전파하는 크랙의 길이를 말한다.

A Study On the Rrobabilistic Nature of Fatigue Crack Propagation Life(I) -The Effect of Distribution of Initial Crack Size- (피로크랙 진전수명의 확률특성에 관한 연구 I -초기크랙길이 분포의 영향-)

  • 윤한용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.138-144
    • /
    • 1990
  • In order to understand the probabilistic nature of fatigue crack propagation, not only the calculation of failure probability and parameter sensitivity, but also the clarification of probabilistic nature of various parameters should be executed. Therefore a method to evalute synthetically the effect of each parameter on the distribution of fatigue crack propagation life is required. In this study, the effects of the initial crack size and other paramaters on the distribution of fatigue crack propagation life are discussed according to the appropriate normalization of the life distribution, the validity of this method is also shown. Such an investigation as the present work may be useful to understand the nature of the life distribution and to utilize the probailistic fracture mechanics.

The Influence of the Small Circular Hole Defect on the Fatigue Crack Propagation Behavior in Aluminum Alloys (알루미늄 합금재의 피로크랙 전파거동에 미치는 미소원공결함)

  • Kim, G.H.;Lee, H.Y.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.834-840
    • /
    • 2008
  • We carried out fatigue testing with materials of aluminum alloyC7075-T6, 2024-T4) by rotary bending fatigue tester. We investigated fatigue limit, fatigue crack initiation, fatigue crack propagation behavior and possibility of fatigue life prediction to the different small circular hole defect. The summarized result are as follows; Fatigue limit of the smooth specimens were related tensile strength and yield strength. In case of more large applied stress and small circular hole crack defect, the fatigue crack was grown rapidly. The fatigue crack propagation behavior proceed at according to inclusion. Fatigue crack propagation ratio appeared instability and retardation phenomenon in the first half of fatigue life but appeared stability and replied in the latter half. On other hand, this experimental data of the materials are appeared fatigue life predictability.

A Study on the Probabilistic Nature of Fatigue Crack Propagation Life(III) - A Method for Uncertainty Evaluation of Crack Propagation Rate - (피로크랙 진전수명의 확율특성에 관한 연구(III) - 크랙진전속도의 불확정성 평가수법 -)

  • 윤한용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1635-1639
    • /
    • 1991
  • 본 연구에서는 제1보에서의 수법을 이용하여 초기크랙길이의 분포를 고려한 재료의 불확정성 평가수법을 제시하고자 한다.

Threshold Condition for the Propagation of Short Fatigue Crack (炭素鋼 微小疲勞크랙 전파의 不限界條件)

  • 김민건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.505-512
    • /
    • 1988
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the microstructure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the '||'&'||'quot;critical non-propagating crack length.'||'&'||'quot; It is found that the reduction of the endurance limit of their particular microstructures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress .DELTA. .sigma. $_{th}$ and the critical non-propagating crack length Lc can be written as .DELTA. .sigma. $_{th}$, Lc=C where m, C is constant. Further experiments were carried out on the effect of pearlitic structure and cyclic loading history on the length of critical non-propagating crack. It is shown that the length of critical non-propagating crack is closely related to both pearlite interlamellar spacing and cyclic loading history.ory. cyclic loading history.

Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance (접촉 열저항 효과를 이용한 피로균열의 적외선검사)

  • Yang, Seungyong;Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.187-192
    • /
    • 2013
  • Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

An Evaluation of Fatigue Properties on Dissimilar Friction Weld of Heat-Resisting Steels Used in Vehicle Valves (차량 밸브용 내열강재 이종 마찰용접부의 피로특성 평가)

  • 이동길;이상열;정재강
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.186-192
    • /
    • 2002
  • The fatigue crack propagation characteristics were investigated on dissimilar friction weld of two kind of heat-resisting steels (STR3 and STR35) commonly used in valve materials for vehicles. A small circular artificial defect was machined to induce fatigue crack at bonded line, heat affected zone and base metal of the weld on the surface of the specimens. From the results of the experiment, the fatigue limits of the materials STR3 and STR35 were obtained to be 429.0MPa and 409.4MPa respectably. The STR35 base metal and 1.0mm HAZ specimens showed 190% and 82% higher fatigue life than STR3 base metal. And the fatigue life of 1.0mm HAZ specimen was shown 99% on STR3 and 29% on STR35 higher than that of their base metal. But the fatigue life of weld interface specimen was shown 18% on STR3 and 72% on STR35 lower than that of their base metal because of the weld interface separation.

A Study on the Fatigue Crack Propagation Behavior in F.F. Shaft Materials of Vehicle with Small Circular Defect at Variable Temperature (미소원공결함을 갖는 자동차 전류구동축재의 온도변화에 따른 피로크랙전파거동에 관한 연구)

  • Lee, S.R.;Lee, D.G.;Chung, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.185-194
    • /
    • 1998
  • In this study, the rotary bending fatigue test was carried out with two kinds of material, S43C and S50C, using in the Front engine and Front drive wheels(F.F.) of vehicle. The one part of specimens was heated by high frequency induction method(about 1mm depth and $H_RC$ 56~60) and tested environment temperature were $-30^{\circ}C$, $+25^{\circ}C$ and $+80^{\circ}C$ in order to look over the influence of the heat treatment and the temperatures. In the experimented result at $+25^{\circ}C$ and $+80^{\circ}C$, the fatigue life of non-heated specimens were decreased about 35%, but that of heated specimens were decreased about only 5% at $+80^{\circ}C$ more than at $25^{\circ}C$. And in the experiment result at $-30^{\circ}C$ and $+25^{\circ}C$, the non-heated and heated specimens were about 110%, 120% higher fatigue life at $-30^{\circ}C$ than at the $+25^{\circ}C$ each other. On the other hand, the fatigue crack propagation rate of S50C was higher than that of S43C.

  • PDF

A Study on the Fatigue Strength Evaluation of Sintered Spur Gears (소결치차의 피로강도평가에 관한 연구)

  • Lyu, Sung-Ki;Katsmi, Inoue
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.106-112
    • /
    • 1999
  • It is very important to have exact informations on the properties and characteristics of the sintered steel as a new material of machine elements. The bending fatigue tests are performed for the sintered steel bend specimens of various densities 6.6 to 7.0 g/$cm^3$ and the sintered spur gear to consisted of Fe-Cu-C. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester. Consequently, the S-N curves are obtained. The fatigue strength S for fatigue life N of the specimen with the initial length of crack ai is simulated, and they are shown as N-S-A curves. This study investigate the crack growth characteristics by experiments and present crack growth simulation method for sintered gear

  • PDF

Evaluation of Thermal Fatigue Lifetimes of Cast Iron Brake Disc Materials (제동 디스크용 주철의 물성 및 열피로 특성평가)

  • Goo, Byeong-Choon;Lim, Choong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.835-841
    • /
    • 2012
  • We measured the mechanical and thermal properties of four types of cast irons used for manufacturing the brake discs of railway vehicles. It was found that these properties could be controlled by varying the composition of Ni, Cr, and Mo. Thermal fatigue tests were carried out by using a thermal fatigue tester in which thermal cycles could be controlled. Thermal crack initiation and propagation were measured on cylindrical specimens. Finally, we simulated the thermal fatigue test procedure by finite element analysis and calculated the thermal fatigue lifetimes by Manson-Coffin's equation and the maximum principal strain. The estimated thermal fatigue lifetimes corresponded to the measured lifetimes when the total crack length was $40{\mu}m{\sim}1mm$.