• Title, Summary, Keyword: 협력적 필터링

Search Result 119, Processing Time 0.036 seconds

Recommendation Method using Naive Bayesian algorithm in Hybrid User and Item based Collaborative Filtering (사용자와 아이템의 혼합 협력적 필터링에서 Naive Bayesian 알고리즘을 이용한 추천 방법)

  • 김용집;정경용;한승진;고종철;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.184-186
    • /
    • 2003
  • 기존의 사용자 기반 협력적 필터링이 가지는 단점으로 지적되었던 희박성과 확장성의 문제를 아이템 기반 협력적 필터링 기법을 통하여 개선하려는 연구가 진행되어 왔다. 실제로 많은 성과가 있었지만. 여전히 명시적 데이터를 기반으로 하기 때문에 희박성이 존재하며, 아이템의 속성이 반영되지 않는 문제점이 있다. 본 논문에서는 기존의 아이템 기반 협력적 필터링의 문제점을 보완하기 위하여 사용자와 아이템의 혼합 협력적 필터링에서 Naive Bayesian 알고리즘을 이용한 추천 방법을 제안한다. 제안된 방법에서는 각 사용자와 아이템에 대한 유사도 검색 테이블을 생성한 후, Naive Bayesian 알고리즘으로 아이템을 예측 및 추천함으로써, 성능을 개선하였다. 성능 평가를 위해 기존의 아이템 기반 협력적 필터링 기술과 비교 평가하였다.

  • PDF

Information Filtering for Preference Prediction of Personalized Recommender System (개인화된 추천 시스템의 선호도 계산을 위한 정보 필터링)

  • 곽미라;조동섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.472-474
    • /
    • 2001
  • 웹 기반의 쇼핑몰 사이트의 수가 많아지고 그 이용량이 증가하면서, 차별화된 고객 서비스를 위해 다양한 데이터마이닝 기술들이 적용되고 있다. 특히 고객의 취향에 부합하며 그의 필요를 만족하는 상품을 고객에게 제안하는 추천 시스템을 위해 정보 필터링(information filtering) 알고리즘들이 사용되고 있다. 많은 추천 시스템들은 고객들이 상품에 대해 부여한 선호도 정보를 기반으로, 현재 사용중인 고객에게 그와 취향이 비슷한 고객들이 선택했으며, 아직 그가 선택한 적이 없는 상품을 추천하는 협력적 필터링(collaborative filtering) 방법을 사용하고 있다. 본 연구에서는 보통의 협력적 필터링 방법에 내용기반 필터링(content-based filtering) 방법을 적용하고, 고객의 상품에 대한 선호도 점수를 자동으로 계산할 수 있도록 하는 방법을 제안하여 적용함으로써 협력적 필터링 방법을 개선하였다.

  • PDF

Collaborative Filtering using User Profiles Informal ion and Real-Time Context Information (사용자 프로파일 정보와 실시간 컨텍스트 정보를 이용한 협력적 필터링)

  • Lee Se-Il;Lee Sang-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.336-339
    • /
    • 2006
  • 추천시스템에서 가장 많이 사용하고 있는 협력적 필터링 방법을 모바일 기기 등에서 사용하려면 추천 정보와 사용자들의 평가 정보가 부족하여 추천의 질이 떨어지게 된다. 이러한 문제를 해결하기 위해 실시간으로 얻어진 컨텍스트 정보를 정량화하여 협력적 필터링에 적용함으로써 보다 나은 추천 결과를 얻을 수 있었다. 그럼에도 불구하고 평가를 하기 위한 컨텍스트 정보가 충분하지 못한 경우 부정확한 결과를 가져올 수 있다. 또한 사용자 정보 평가 과정 중 정량화 단계의 분류 과정을 단순히 하게 되면 서비스 받는 사용자가 정확한 그룹에 분류되어 정확도가 결여되는 문제가 발생한다. 본 논문에서는 실시간으로 얻을 수 있는 컨텍스트 정보가 부족한 경우, 내용 기반 필터링에서 많이 사용하고 있는 사용자 프로파일 정보를 실시간 컨텍스트 정보와 결합한다. 그리고 정량화 단계를 개선하여 협력적 필터링함으로써 기존의 방법보다 향상된 결과를 얻을 수 있다.

  • PDF

A Study on the Relation of Top-N Recommendation and the Rank Fitting of Prediction Value through a Improved Collaborative Filtering Algorithm (협력적 필터링 알고리즘의 예측 선호도 순위 일치와 ToP-N 추천에 관한 연구)

  • Lee, Seok-Jun;Lee, Hee-Choon
    • Journal of the Korea Industrial Information Systems Research
    • /
    • v.12 no.4
    • /
    • pp.65-73
    • /
    • 2007
  • This study devotes to compare the accuracy of Top-N recommendations of items transacted on the web site for customers with the accuracy of rank conformity of the real ratings with estimated ratings for customers preference about items generated from two types of collaborative filtering algorithms. One is Neighborhood Based Collaborative Filtering Algorithm(NBCFA) and the other is Correspondence Mean Algorithm(CMA). The result of this study shows the accuracy of Top-N recommendations and the rank conformity of real ratings with estimated ratings generated by CMA are better than that of NBCFA. It would be expected that the customer's satisfaction in Recommender System is more improved by using the prediction result from CMA than NBCFA, and then Using CMA in collaborative filtering recommender system is more efficient than using NBCFA.

  • PDF

Collaborative Filtering Method Using Context of P2P Mobile Agents (P2P 모바일 에이전트의 컨텍스트 정보를 이용한 협력적 필터링 기법)

  • Lee Se-Il;Lee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.643-648
    • /
    • 2005
  • In order to supply services necessary for users intelligently in the ubiquitous computing, effective filtering of context information is necessary. But studies of context information filtering have not been made much yet. In order for filtering of context information, we can use collaborative filtering being used much at electric commerce, etc. In order to use such collaborative filtering method in the filtering of ubiquitous computing environment, we must solve such problems as first rater problem, sparsity problem, stored data problem and etc. In this study, in order to solve such problems, the researcher proposes the collaborative filtering method using types of context information. And as the result of applying this filtering method to MAUCA, the P2P mobile agent system, the researcher could confirm the average result of 7.7% in the aspect of service supporting function.

A Collaborative Filtering Approach using User Profile (사용자 프로파일 정보를 고려한 협력 필터링)

  • Kim, Byung-Man;Lee, Kyung;Park, Chang-Seok;Kim, Si-Kwan;Kim, Ju-Yeon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.286-288
    • /
    • 2002
  • 엄청난 속도로 증가하고 있는 정보의 홍수 시대에서는 정보들을 선별하기 위하여 정보 필터링 기법이 필요하다. 정보 필터링은 내용 기반 방법과 협력에 의한 방법으로 분류할 수 있다. 내용 기반 기법에서는 내용에 기반을 두어 정보를 추출하는 반면 협력 기법은 대상이 되는 사용자에 대한 예측을 하기 위하여 다른 사람들의 의견들을 이용하게 된다. 본 논문에서는 기존 협력 필터링 방법의 문제점을 해결하기 위한 방법의 일환으로 내용 기반 기법과 협력 기법을 보다 유기적으로 결합시키는 연구를 수행하였다. 이를 위해 협력 필터링 틀을 그대로 유지하면서 사용자 프로파일을 효과적으로 이용하는 방법을 제안하였다. 또한, 본 논문에서 제시한 기법을 실험적으로 분석하고 기존의 필터링 기법과 비교함으로써 제시된 기법의 우수성을 보였다.

  • PDF

Filtering Technique of P2P Mobile Agent using Naive Bayesian Algorithm (Naive Bayesian 알고리즘을 이용한 P2P 모바일 에이전트의 필터링 기법)

  • Lee Se-Il;Lee Sang-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.363-366
    • /
    • 2005
  • 유비쿼터스 컴퓨팅에서 사용자에게 필요한 서비스를 지능적으로 제공하기 위해서는 컨텍스트 정보의 효과적인 필터링이 필요하다. 현재까지 사용되고 있는 필터링 기술은 온라인상에서 사용되는 사용자 정보를 기준으로 서비스를 제공하고 있다. 하지만 휴대용 유$\cdot$무선기기에서 컨텍스트 인식에 기반을 둔 서비스를 제공하기 위해서는 복잡한 필터링과정과 큰 저장 공간이 요구된다. 따라서 본 논문에서는 사용자 주변에 널려 있는 센서를 통해 입력된 컨텍스트 정보들을 효율적으로 필터링하여 사용자에게 필요한 서비스만을 제공하도록 하였다. 이를 위해서 기존의 P2P 모바일 에이전트에서 사용되는 협력적 필터링 기술에 Naive Bayesian 알고리즘을 혼합한 컨텍스트 협력적 필터링 알고리즘을 제안한다.

  • PDF

협력적 필터링 추천시스템에서 이웃의 수를 이용한 선호도 예측보정 방법

  • Lee, Seok-Jun;Kim, Sun-Ok;Lee, Hee-Choon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • /
    • pp.27-31
    • /
    • 2009
  • 본 연구는 웹상에서 거래되는 아이템을 고객에게 추천하는 추천시스템에서 추천대상 고객의 정보와 이웃 고객의 정보를 이용한 협력적 필터링 추천기법에서 선호도 예측을 위해 필요한 이웃의 수가 선호도 예측 정확도에 영향을 주고 있음을 제시하고 이를 이용한 선호도 예측치의 보정 방법에 대하여 제안한다. 본 연구의 제안을 위하여 이웃 기반의 협력적 필터링 알고리즘과 대응평균 알고리즘을 이용하여 MovieLens 1 million dataset에 대하여 선호도 예측 정확도를 분석하고 분석결과를 토대로 개별 선호도 예측에 소요된 이웃의 수와 예측 정확도의 관계를 분석하였다. 분석결과를 이용하여 이웃 수에 따라 선호도 예측 결과를 다수의 집단으로 구분하여 각 집단에서 이웃의 수를 이용한 선호도 예측 정확도 향상에 대한 방법을 제안한다. 본 연구의 제안을 통하여 기존 선호도 예측 알고리즘으로 생성된 예측 결과에 선호도 예측 과정에서 부가적으로 발생한 정보를 추가하여 최종 예측 결과를 향상시킬 수 있을 것으로 기대한다.

  • PDF

A Collaborative Fi1tering based Context Information in Pure P2P Environments (Pure P2P 환경에서 컨텍스트 정보에 기반을 둔 협력적 필터링)

  • Lee Se-Il;Lee Sang-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.363-366
    • /
    • 2005
  • Pure P2P 환경에서는 축적된 자료를 사용하지 않고 실시간 정보를 사용하여 소수의 서비스 항목만으로도 협력적 필터링을 제공할 수 있어야 한다 그러나 지역에서 수집된 소수의 서비스 항목만으로 협력적 필터링을 할 경우 추천 서비스의 질이 떨어지게 되므로, 사용자의 컨텍스트 정보를 이용하여 추천 서비스의 질을 높일 수 있는 방법이 연구되어야 한다. 하지만 사용자 컨텍스트 정보는 다량의 정보가 순간에 인식될 수 있기 때문에 확장성 문제(Scalability Problem)가 발생하고, 영역과 아이템에 따라 차별화된 서비스를 지원하기에는 한계성을 가지고 있다. 이러한 문제점을 해결하기 위하여 본 연구에서는 SOM을 이용하여 컨텍스트 정보를 서비스 영역별로 클러스터링(Clustering)하여, 사용자별로 분류함으로 확장성 문제를 해결하였다. 또한, 분류된 자료들 중 서비스 요구자와 비슷한 분류에 있는 사용자들의 컨텍스트 정보들을 정량화하여 협력적 필터링함으로 사용자에게 적합한 서비스를 지원할 수 있다.

  • PDF

Personalized Recommender System Using Information Filtering (정보 필터링을 사용한 개인화된 추천시스템)

  • Kwak, Mi-Ra;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.2807-2809
    • /
    • 2001
  • 본 논문에서는 웹기반 쇼핑몰에서 사용자들에게 새로운 상품을 추천하는 시스템을 제안한다. 추천시스템이란 사용자의 필요와 취향을 고려하여 그에게 적합한 새로운 상품이나 대신할만한 상품 등을 추천하는 시스템이다. 지금까지 제안된 대부분의 추천시스템들은 협력적인 필터링 기법을 쓰고 있는데, 이러한 시스템의 경우 사용자들의 선호도 점수 정보가 부족하면 정확한 추천결과를 기대할 수 없다. 본 논문에서는 내용기반 필터링 기법을 협력적 필터링 기법과 함께 사용하여 이와 같은 문제를 해결하고자 한다.

  • PDF