In regression analysis, the ordinary least squares estimates of regression coefficients become poor, when the correlations among predictor variables are high. This phenomenon, which is called multicollinearity, causes serious problems in actual data analysis. To overcome this multicollinearity, many methods have been proposed. Ridge regression, shrinkage estimators and methods based on principal component analysis (PCA) such as principal component regression (PCR) and latent root regression (LRR). In the last decade, many statisticians discussed sensitivity analysis (SA) in ordinary multiple regression and same topic in PCR, LRR and logistic principal component regression (LPCR). In those methods PCA plays important role. Many statisticians discussed SA in PCA and related multivariate methods. We introduce the method of PCR and LRR. We also introduce the methods of SA in PCR and LRR, and discuss the properties of SA in PCR and LRR.