• Title, Summary, Keyword: 2-butanol

Search Result 1,196, Processing Time 0.048 seconds

Effects of iso-Butanol on Photosynthetic Electron Transport Activity in Isolated Spinach Chloroplasts (시금치(Spinacia oleracea L.) 엽록체의 광합성 전자전달 활성에 미치는 iso-Butanol의 영향)

  • 박강은
    • Journal of Plant Biology
    • /
    • v.35 no.3
    • /
    • pp.247-252
    • /
    • 1992
  • The effect of iso-butanol on the electron transport rate of PS I and PS II was investigated in isolated spinach chloroplasts. In photosystem I, the rate of electron transport increased in the presence of 1 to 4% of isobutanol but decreased in 5 to 9% of iso-butanol. But in photosystem II, the rate of electron transport decreased when treated with 0.2 to 1% of iso-butanol. The inhibitory effect of isomers of butanol on PS II electron transport rate increased in the order of 2-butanol, tert-butanol, iso-butanol and I-butanol. This means that PS II activity was affected according to the arrangement of carbon atoms in butanol. The inhibitory effect of iso-butanol reduced when DPC was added in the solution. This means that iso-butanol affects PS II reduction side of thylakoid membrane primarily. The inhibitory effect of iso-butanol was reduced when $Mn^{2+},\;C^{2+}$ or BSA were added in the solution. PS II activity was restored when 1% iso-butanol treated chloroplast solution was diluted to twentyfold or when $Mn^{2+},\;C^{2+}$ or BSA was added to the diluted solution. However, the SDS-PAGE banding pattern of thylakoid membrane proteins was similar even in 2% iso-butanol treated chloroplasts and the control ones. Only in 5% iso-butanol treated chloroplasts these bands were very weak. These observations suggest that low concentrations of iso-butanol releases manganese and calcium ions from chloroplasts and inhibits the electron transport system. This inhibitory effect can be reversible in low concenterations but in high concentrations the inhibitory effect of iso-butanol become irreversible.rsible.

  • PDF

Evaluation of Various Storage Temperatures and Times on the Composition of Volatile Compounds Extracted from Fresh Pork Belly (저장 온도와 시간이 신선한 돈육 삼겹 부위로부터 추출한 휘발성 화합물의 조성에 미치는 영향)

  • Park, Sung-Yong;Chin, Koo-Bok;Yoo, Seung-Seok
    • Food Science of Animal Resources
    • /
    • v.26 no.4
    • /
    • pp.441-446
    • /
    • 2006
  • The objective of this study was to investigate volatile compounds extracted from fresh pork belly during storage time at 4 or $20^{\circ}C$. Approximately thirty-one volatile compounds includingaromatics (6), aldehydes (6), acids (5), alcohols (4), ketones (4), alkanes (4), alkenes (1) and amines (1) in fresh pork belly were identified. Among them, volatile compounds such as 1-butanol, propane, 2-butanol, 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol, 1-pentanol, phenol, 2-pentyl-furan, indole and 2-dodecanone correlated with storage temperature and storage time. Aldehydes including hexanal and hexadecanal at 4t were the predominant volatile compounds, whereas at $20^{\circ}C$ storage, aromatics including phenol and indole, and alcohols including 2-butanol and 1-butanol were the predominant volatile compounds. Contents of 1-butanol, 2-butanol, 3-hydroxy-2-butanone, acetic acid, phenol and indole increased markedly with increased storage time, and 1-butanol, 2-butanol, 3-hydroxy-2-butanone, acetic acid, indole and 2-dodecanone were only detected at $20^{\circ}C$ storage.

Measurement and Prediction of Autoignition Temperature of n-Butanol and sec-Butanol System (노말부탄올과 2차부탄올 계의 최소자연발화온도의 측정 및 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • The autoignition temperature (AIT) is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs and ignition delay time for n-Butanol+sec-Butanol system by using ASTM E659 apparatus. The AITs of n-Butanol and sec-Butanol which constituted binary system were $340^{\circ}C$ and $447^{\circ}C$, respectively. The experimental AITs of n-Butanol+sec-Butanol system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D. (average absolute deviation).

Properties of the Microinterface formed by Phosphatidylcholine and 1-Butanol as Reaction Media of Hydrolysis of Phosphatidylcholine

  • Yamazaki, Keiju;Imai, Masanao;Suzuki, Isao
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • /
    • pp.82-85
    • /
    • 2004
  • Microinterface of W/Omicroemulsion prepared by phosphatidylcholine was used as reaction media of hydrolysis of phosphatidylcholine by phospholipaseA$_2$. Phosphatidylcholine was used as an amphiphile and was acted as a substrate. Organic phase of W/Omicroemulsion in this study was prepared by mixed organic solvents i.e. 2,2,4-trimethylpentane (isooctane) as a main solvent and 1-butanol as a co-solvent. The effect of added 1-butanol was remarkable not only on reaction beginning but also on high reaction rate. The hydrolysis reaction was dramatically initiated when 1-butanol was injected into the running isooctane/PC system. The enhancement by 1-butanol addition into single organic solvent was our original finding compare with previous conventional organic solvent. The reaction rate was elevated by the added amount of 1-butanol. The enhanced reaction rate was about 150-folds. This enhancement was speculated as 1-butanol adsorption on the microinterface. The adsorbed 1-butanol improved the properties of microinterface, especially its mobility was increased by difference of the chain length between phosphatidylcholine and 1-butanol. PhospholipaseA$_2$ molecules were located on the microinterface due to modified mobility of microinterface. Located phospholipaseA$_2$ on the microinterface reacted easily with phosphatidylcholine molecule. As a result high reaction rate was obtained. Microinterfacial properties were successfully improved by adsorbed 1-butanol molecule, and were favorable to appear higher reactivity of phospholipaseA$_2$.

  • PDF

Isolation and characteristics of hyper-butanol producing OBT7 mutant of Clostridium saccharoperbutylacetonicum N1-4 (클로스트리디움 싸카로퍼부틸아세토니컴 N1-4주(株)로부터 부타놀 다량생산주(株) OBT 돌연변이의 분리와 특성)

  • Ahn, Byoung-Kwon
    • Applied Biological Chemistry
    • /
    • v.36 no.1
    • /
    • pp.38-44
    • /
    • 1993
  • 1) OBT7 mutant was isolated by W light-butanol tolerance from Clostridium saccharoperbutylacetonicm ATCC 13564 (N1-4 strain). The mutant produced 16.5 g/l (1.4-fold increase) of n-butanol, 4.65 g/l (1.5-fold increase) of acetone, and 21.5 g/l of total solvent. It was suggested that clostridial bacteria producing n-butanol does not have a poor effect on misrepair via an error-prone pathway by UV light-butanol tolerance. 2) Compared to glucose fermentation, in mannitol fermentation, OBT7 mutant did not produce acetone and acetic acid. And the ratios of n-butanol and ethanol to total solvents increased by 10.3% and 10.5%, respectively, totalling 20.8%, while the ratio of acetone was decreased by 21.2%. Also the maximum ratio of n-butanol to total solvents reached 94.8%. These results indicated that oxidized compound (acetone, acetic acid, and butyric acid) was converted to the reduced compounds (n-butanol, and ethanol). Therefore, mannitol can be used to eliminate by-products of oxidized compound.

  • PDF

The Measurement of the Fire and Explosion Properties for 2-Methyl-1-butanol (2-Methyl-1-butanol의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • For the safe handling of 2-methyl-1-butanol being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of 2-methyl-1-butanol was experimented. And, the lower explosion limit of 2-methyl-1-butanol was calculated by using the lower flash point obtained in the experiment. The flash points of 2-methyl-1-butanol by using the Setaflash and Pensky-Martens closed-cup testers measured $40^{\circ}C$ and $44^{\circ}C$, respectively. The flash points of 2-methyl-1-butanol by using the Tag and Cleveland open cup testers are measured $49^{\circ}C$ and $47^{\circ}C$. The AIT of 2-methyl-1-butanol by ASTM 659E tester was measured as $335^{\circ}C$. The lower explosion limit by the measured flash point $40^{\circ}C$ was calculated as 1.30 Vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

Removal Characteristics of Ethyl Acetate and 2-Butanol by a Biofilter Packed with Jeju Scoria

  • KAM SANG-KYU;KANG KYUNG-HO;LEE MIN-GYU
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.977-983
    • /
    • 2005
  • The removal characteristics of ethyl acetate and 2-butanol were investigated in a bench-scale down-flow biofilter packed with Jeju scoria medium. Various inlet concentrations and gas flow rates were tested. The adaptation times of microorganisms to the change of the influent concentration of ethyl acetate and 2-butanol gas were found to be about 3 days. At the inlet concentration of 300 ppmv and empty bed contact time (EBCT) of 15 see, the removal efficiencies of the biofilter for ethyl acetate and 2-butanol were above $99.9\%$. The maximum removal capacity of the biofilter for ethyl acetate was $316-318\;g/m^3/h$ and that for 2-butanol was $245-251\;g/m^3/h$. Overall, the removal capacity of the biofilter for ethyl acetate was $50-70\;g/m^3/h$ larger than that for 2-butanol. During the operation of 65 days, the pressure drop through the biofilter column was maintained below $13\;mmH_{2}O/m$. Although the pH in the drain water decreased from 7.2 to 5.0, the pH drop did not affect the removal of the gases. From the above results, the biofilter using Jeju scoria as a packing material seemed to very effectively treat waste gases such as ethyl acetate and 2-butanol.

Antigastritic and Antiulcer Actions of the Fraction of Taheebo (Taheebo 분획물의 의염 및 위궤양에 대한 효과)

  • 정춘식;정기화
    • Biomolecules & Therapeutics
    • /
    • v.5 no.4
    • /
    • pp.331-335
    • /
    • 1997
  • In a preliminary screening of plant extracts for the antigastritic and antiulcer actions in rats, the methanol extracts of Taheebo showed positive activity in HCI . ethanol-induced gastric lesion. Among the systematic fractions of hexane, chloroform, butanol and water, the most potent $H_2O$ fraction reduced significantly HCI . ethanol-induced gastric lesion at the oral dose of 300 mg/kg. In pylorus ligated rats chloroform and butanol fraction showed decreases in the volume of gastric secretion and acid output of which effects were stronger in chloroform fraction. Further assays with hexane butanol and $H_2O$ fraction disclosed that it significantly suppressed the aspirin-induced ulcer. The butanol fraction reduced significantly acetic acid induced ulcer at the dose of 400 mg/kg. The butanol and $H_2O$ fraction reduced the malondialdehyde level in HCI . ethanol-induced gastric lesion. In pylorus ligated rats, chloroform and butanol fraction reduced the malondialdehyde level and in aspirin-induced ulcer, chloroform fraction reduced that levle. These results might suggest that the butanol and $H_2O$ fraction of Taheebo had inhibitory action in gastric lesion and ulceration through inhibition of gastric acid secretion and the decrease malondialdehyde level.

  • PDF

The Effects of 5 kinds of Injinsaryung-San fractions on Cell Viability, Cell Cycle Progression and Fas-mediated Apoptosis of HepG2 Cells (인진사령산 분획물이 간세포활성, 세포주기 및 Fas-Mediated Apoptosis에 미치는 영향)

  • 고흥;이장훈;우홍정
    • The Journal of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.174-185
    • /
    • 2000
  • Objectives : This study was carried out to evaluate the effects of five fractions on cell viability, cell cycle progression and apoptosis. Methods : This study employed MTT assay, Cell cycle analysis, Cpp32 protease assay, DNA fragmentation assay and Quantitative RT-PCR analysis. Results : In MTT assay, the butanol fraction of Injinsaryung-San has showed magnificent viability, while the $H_2O$ fraction and ethylacetate fraction also showed higher viability than the control group. The $H_2O$ fraction of Injinsaryung-San has showed magnificent viability, and butanol fraction and ethylacetate fraction of Injinsaryung-San with etoposide have also showed higher viability than the only etoposide group. Cell cycle analysis showed that each fraction of Injinsaryung-San had no significant effect on the cell cycle. DNA fragmentation assay showed that the butanol fraction, $H_2O$ fraction and ethylacetate fraction carried inhibitory effects on apoptosis induction. Cpp32 protease activity assay showed that the butanol fraction, $H_2O$ fraction and ethylacetate fraction decreased Cpp32 protease activity, with the butanol fraction displaying greater effects. Quantitative RT-PCR showed that the butanol fraction, $H_2O$ fraction and ethylacetate fraction suppressed Fas and Bax genes, the butanol fraction increased BcI-2 gene, however no effect on Cpp32. Conclusions : The data shows that the butanol fraction of Injinsaryung-San increases the hepatocyte viability and has the heptocelluar protective effect by the suppression of apoptosis through gene regulation.

  • PDF